使用YOLOV8 CLI训练自己的数据集

YOLOV8现在可以直接通过命令行工具运行训练, 推理过程了, 方法如下, 首先安装ultralytics的包:

pip install ultralytics

接着尝试使用yolov8n来简单做个推理:

yolo task=detect mode=predict model=yolov8n.pt conf=0.25 source=some_picture.jpeg

在这里插入图片描述
接下来我们使用一个安全防护, 包括安全帽与反光衣的数据集, 利用3060显卡, 训练看看.
首先我们把数据集连同标注上传到 https://app.roboflow.com/
具体方法如下:
https://blog.roboflow.com/how-to-train-yolov8-on-a-custom-dataset/

基本上拖进去, 点两下鼠标就可以了.

在这里插入图片描述

点击Custom Train and Upload

在这里插入图片描述

选择YOLOv8, 点击GetSnippet

在这里插入图片描述
系统会帮你打个包, 在miniconda里面, 使用curl下载这个压缩包, 然后如果是windows系统, 就直接用系统的解压缩工具解压.

在这里插入图片描述
打开这个reboflow文件夹里面有个data.yaml, 打开, 编辑一下类别名称
在这里插入图片描述
3060显卡只有8G显存, 尝试使用batchsize为16来训练, 后面根据情况调整.

另外, 需要保证这torch的这三个, 是使用的gpu版本:
在这里插入图片描述
开始训练吧:

yolo task=detect mode=train model=yolov8s.pt data=C:\Users\zunly\OneDrive\ai\yolov8_playground\roboflow\data.yaml epochs=100 imgsz=640 batch=16

训练开始了.
在这里插入图片描述
这么点数据, 估计训练120轮也差不多了.

在这里插入图片描述
在166轮的时候告诉我最近50轮都没有啥大的进展, 就自动停止了.

ok, 接下来就利用这个模型来做个推理, source就是我的自拍视频:

在这里插入图片描述

yolo task=detect mode=predict model=C:\Users\zunly\OneDrive\ai\yolov8_playground\runs\detect\train16\weights\best.pt conf=0.25 source=C:\Users\zunly\OneDrive\media_sample\safe_vese_and_hat.mp4 show=True
YOLOv8可以在命令行界面(CLI使用yolo命令运行。通过yolo命令,可以执行多个任务和操作。例如,可以使用yolo task=detect来执行目标检测任务,并且可以通过mode=train来指定训练模式。还可以使用model参数指定要使用YOLOv8模型文件,例如model=yolov8n.pt。此外,可以使用export命令将YOLOv8模型导出为ONNX格式,格式为export yolov8n.pt format=onnx。最后,还可以使用yolo predict命令在给定的图像上进行预测,例如yolo predict model=yolov8n.pt source="https://ultralytics.com/images/bus.jpg"。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [【目标检测】如何使用Yolov8](https://blog.csdn.net/wzk4869/article/details/129010288)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [YOLOv8 来了,快速上手实操](https://blog.csdn.net/shangyanaf/article/details/130539468)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值