基于深度学习的探地雷达图像异常智能判译技术和软件

本文介绍了基于深度学习的探地雷达图像异常智能判译技术,通过建立探地雷达样本库,利用YOLOv3框架搭建神经网络模型进行训练,并开发了智能识别软件,显著提升了探地雷达图像的判读效率。
摘要由CSDN通过智能技术生成

基于深度学习的探地雷达图像异常智能判译技术和软件

近几年城市道路坍塌事故频发,预防此类事故的发生,需要一种高效的道路检测手段,对道路无损害且高效的车载阵列式三维探地雷达是完成此项工作最适合的技术。

但在实际探测中,三维探地雷达现场检测产生海量数据,数据传回到室内需通过人工处理和判读,这种人工判读主观性强,判读过程漫长枯燥容易使人疲劳,相对于高效的检测手段来说,这样的判读效率显然是低下的,因此研究提高判读效率的方法非常重要。

目录

1、探地雷达样本库的建立

2、神经网络模型的搭建

3、模型训练与识别结果分析

​4、智能识别软件的开发


1、探地雷达样本库的建立

针对近1000张探地雷达图像中管线和空洞的异常进行标注,形成样本集。

图 样本集

信号类型

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

geophysical_w

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值