数据结构和算法--优先级队列

该文提供了三种Java实现优先级队列的方法:无序数组、有序数组和堆。无序数组通过查找最大值进行操作,有序数组在插入时保持顺序,而堆则利用完全二叉树结构保证效率。每种实现都包括插入、删除、查看最大值和检查队列状态的功能。
摘要由CSDN通过智能技术生成

无序数组实现

package com.zwz.priority;

/**
 * 无序数组的实现
 * @param <E>
 */
public class PriortiyServiceImpl<E extends Priortiy> implements PriortiyService<E> {

    E[] array = (E[]) new Priortiy[5];
    int size = 0;

    @Override
    public Boolean offer(E e) {
        if (isFull()) {
            return false;
        }
        array[size] = e;
        size++;
        return true;
    }

    private int getMax() {
        int m = 0;
        for (int i = 1; i < array.length; i++) {
            if (array[m].priortiy() < array[i].priortiy()) {
                m = i;
            }
        }
        return m;
    }

    @Override
    public E poll() {
        if (isEmpty()) {
            return null;
        }
        int max = getMax();
        E e = array[max];
        remove(max);
        return e;
    }

    private void remove(int index) {
        if (index < size - 1) {
            System.arraycopy(array,index+1,array,index,size-1-index);
        }
        size--;
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        int max = getMax();
        return array[max];
    }

    @Override
    public Boolean isFull() {
        return size == array.length;
    }

    @Override
    public Boolean isEmpty() {
        return size == 0;
    }
}

有序数组实现

package com.zwz.priority;

/**
 * 有序数组的实现
 *
 * @param <E>
 */
public class PriortiyServiceImpl2<E extends Priortiy> implements PriortiyService<E> {

    E[] array = (E[]) new Priortiy[5];
    int size = 0;

    @Override
    public Boolean offer(E e) {
        if (isFull()) {
            return false;
        }
        if(size == 0){
            array[size] = e;
        }else{
            insert(e);
        }
        size++;
        return true;
    }

    private void insert(E e) {
        for (int i = size-1; i >= 0; i--) {
            if (e.priortiy() > array[i].priortiy()) {
                System.arraycopy(array, i, array, i + 1, size - i);
                array[i + 1] = e;
                break;
            }
        }
    }

    @Override
    public E poll() {
        if (isEmpty()) {
            return null;
        }

        for (int i = 0; i < array.length; i++) {
            System.out.println(array[i].priortiy());
        }

        E e = array[size - 1];
        size--;
        return e;
    }


    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[size - 1];
    }

    @Override
    public Boolean isFull() {
        return size == array.length;
    }

    @Override
    public Boolean isEmpty() {
        return size == 0;
    }
}

完全二叉树实现: 堆

完全二叉树:父节点如果有子节点。添加子节点从左到右添加

大顶堆:父节点比子节点大

小顶堆:父节点比子节点小

使用完全二叉树实现优先级队列

 堆实现:

package com.zwz.priority;

/**
 * 无序数组的实现
 *
 * @param <E>
 */
public class PriortiyServiceImpl3<E extends Priortiy> implements PriortiyService<E> {

    E[] array = (E[]) new Priortiy[10];
    int size = 0;

    @Override
    public Boolean offer(E e) {
        if (isFull()) {
            return false;
        }
        int child = size++;
        int parent = (child - 1) / 2;
        while (child > 0 && e.priortiy() > array[parent].priortiy()) {
            array[child] = array[parent];
            child = parent;
            parent = (child - 1) / 2;
        }
        array[child] = e;
        return true;
    }

    @Override
    public E poll() {
        if (isEmpty()) {
            return null;
        }
        swap(0, size - 1);
        size--;
        E e = array[size];
        array[size] = null;
        dowm(0);
        return e;
    }

    //下沉代码
    private void dowm(int parent) {
        int left = (2 * parent) + 1;
        int right = left + 1;
        int max = parent;
        if (left < size && array[left].priortiy() > array[max].priortiy()) {
            max = left;
        }
        if (right < size && array[right].priortiy() > array[max].priortiy()) {
            max = right;
        }
        if(max != parent){
            swap(max,parent);
            dowm(max);
        }
    }

    private void swap(int i, int j) {
        E e = array[i];
        array[i] = array[j];
        array[j] = e;
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[0];
    }

    @Override
    public Boolean isFull() {
        return size == array.length;
    }

    @Override
    public Boolean isEmpty() {
        return size == 0;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值