OpenCV单通道图像按像素成倍比例放大(无高斯平滑处理)

本文讨论了OpenCV中的resize函数在图像放大时会应用高斯模糊以减少信息损失,同时介绍了自定义的enlarge_without_gauss函数,用于仅保留像素色彩信息的场景。通过示例展示了两种方法在图像放大8倍时的效果。
摘要由CSDN通过智能技术生成

OpenCV中的resize函数可以对图像做任意比例的放大(/缩小)处理,该处理过程会对图像做高斯模糊化以保证图像在进行放大(/缩小)后尽可能保留源图像所展现的具体内容(消除固定频率插值/采样带来的香农采样信息损失),但在有些场景中该方法不适用,如:部分应用场景只为了展现图像具体像素的色彩信息,则其就不需要对具体输入的图像做高斯平滑处理,则此场景需要自行实现,实现代码如下:

def enlarge_without_gauss(img, ratio:int):
    h,w = img.shape
    img_x_ratio = np.zeros((img.shape[0]*ratio, img.shape[1]*ratio), dtype=np.uint8)
    for h in range(img.shape[0]):
        for w in range(img.shape[1]):
            img_x_ratio[h*ratio:h*ratio+ratio, w*ratio:w*ratio+ratio] = img[h,w]
    return img_x_ratio

与OpenCV自带的resize函数放大对比简易比较代码如下:

import numpy as np
import cv2

def enlarge_without_gauss(img, ratio:int):
    h,w = img.shape
    img_x_ratio = np.zeros((img.shape[0]*ratio, img.shape[1]*ratio), dtype=np.uint8)
    for h in range(img.shape[0]):
        for w in range(img.shape[1]):
            img_x_ratio[h*ratio:h*ratio+ratio, w*ratio:w*ratio+ratio] = img[h,w]
    return img_x_ratio

# 随机产生一张单通道图像
img = np.random.rand(80, 120)
img = (img * 255).astype(np.uint8)
cv2.imshow("img", img)

# 设置缩放比例
RATIO = 8

# 按具体像素位放大
img_enlarge_xN_without_gauss = enlarge_without_gauss(img, RATIO)
cv2.imshow("enlarge_xN_without_gauss", img_enlarge_xN_without_gauss)

# 使用opencv自带函数resize放大
h, w = img.shape
img_resize_xN = cv2.resize(img, (w*RATIO, h*RATIO))
cv2.imshow("resize_xN", img_resize_xN)

cv2.waitKey(0)

随机产生的原图如下:

按像素放大效果(设置的8倍):

使用opencv resize函数放大(设置的8倍):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值