faster rcnn细节
参考: https://zhuanlan.zhihu.com/p/31426458
https://www.cnblogs.com/dudumiaomiao/p/6560841.html
bounding box regression原理
如图所示绿色框为飞机的Ground Truth(GT),红色为提取的positive anchors,即便红色的框被分类器识别为飞机,但是由于红色的框定位不准,这张图相当于没有正确的检测出飞机。所以我们希望采用一种方法对红色的框进行微调,使得positive anchors和GT更加接近。
理论
对于窗口一般使用四维向量 ( x , y , w , h ) (x,y,w,h) (x,y,w,h)表示,分别表示窗口的中心点坐标和宽高。
对下图,红色的框A代表原始的positive Anchors,绿色的框G代表目标的GT,我们的目标是寻找一种关系,使得输入原始的anchor A经过映射得到一个跟真实窗口G更接近的回归窗口G’,即:
- 给定anchor A = ( A x , A y , A w , A h ) A=(A_x,A_y,A_w,A_h) A=(Ax,Ay,Aw,Ah)和GT G = [ G x , G y , G w , G h ] G=[G_x,G_y,G_w,G_h] G=[Gx,Gy,Gw,Gh]
- 寻找一种变换F,使得 F ( A x , A y , A w , A h ) = ( G x ‘ , G y ‘ , G w ‘ , G h ‘ ) F(A_x,A_y,A_w,A_h)=(G^‘_x,G^‘_y,G^‘_w,G^‘_h) F(Ax,Ay,Aw,Ah)=(