300. Longest Increasing Subsequence

https://leetcode.com/problems/longest-increasing-subsequence/description/

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?

解题思路:
求最长递增子序列
dp[i]表示当前索引的最长递增子序列的长度
状态转移方程

      dp[i]=dp[i] if(nums[i]<nums[j],i>j)
      dp[i]=dp[j]+1 if(nums[i]>nums[j]&&dp[i]<dp[j]+1)

边界

dp[i]=1
public class Longest_Increasing_Subsequence_300 {

    /**
     * 求最长递增自序列
     * dp[i]表示当前索引的最长递增子序列的长度
     * dp[i]=dp[i] if(nums[i]<nums[j],i>j)
     * dp[i]=dp[j]+1 if(nums[i]>nums[j]&&dp[i]<dp[j]+1)
     * 边界dp[0]=0,dp[1]=1
     * @param nums
     * @return
     */
    public int lengthOfLIS(int[] nums) {
        if(nums==null||nums.length==0)return 0;
        int n = nums.length;
        int[] dp = new int[n+1];
        int max = 0;
        for(int i=0;i<n;i++){
            //每个子问题最短也为1
            dp[i]=1;
            for(int j=0;j<i;j++){
                if(nums[i]>nums[j]&&dp[i]<dp[j]+1){
                    dp[i] = dp[j] + 1;
                }
            }
            if(dp[i]>max)max = dp[i];
        }
        return max;
    }

    public static void main(String[] args) {
        new Longest_Increasing_Subsequence_300().lengthOfLIS(new int[]{1,3,6,7,9,4,10,5,6});
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值