Common Subsequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 26383 Accepted Submission(s): 11720
Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcab programming contest abcd mnp
Sample Output
4 2 0
经典DP问题;如果i和j处相同,那么就在前面的基础上加一,如果i和j处不相同,那么要么是【i】【j-1】那么就是【i-1】【j】,取最大的即可
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int l[2000][2000];
char str1[2000],str2[2000];
int main()
{
// string string1,string2;
while(scanf("%s%s",str1,str2)!=EOF)
{
int lx=strlen(str1);
int ly=strlen(str2);
// cout<<"wr";
memset(l,0,sizeof(l));
//if(str1[0]==str2[0]) l[0][0]=1;
for(int i=1;i<=lx;i++)
for(int j=1;j<=ly;j++)
if(str1[i-1]==str2[j-1]) l[i][j]=l[i-1][j-1]+1;
else
l[i][j]=max(l[i-1][j],l[i][j-1]);
printf("%d\n",l[lx][ly]);
}
return 0;
}