hiho一下 第四十八周题目1 : 拓扑排序·二

描述

小Hi和小Ho所在学校的校园网被黑客入侵并投放了病毒。这事在校内BBS上立刻引起了大家的讨论,当然小Hi和小Ho也参与到了其中。从大家各自了解的情况中,小Hi和小Ho整理得到了以下的信息:

  • 校园网主干是由N个节点(编号1..N)组成,这些节点之间有一些单向的网路连接。若存在一条网路连接(u,v)链接了节点u和节点v,则节点u可以向节点v发送信息,但是节点v不能通过该链接向节点u发送信息。
  • 在刚感染病毒时,校园网立刻切断了一些网络链接,恰好使得剩下网络连接不存在环,避免了节点被反复感染。也就是说从节点i扩散出的病毒,一定不会再回到节点i。
  • 当1个病毒感染了节点后,它并不会检查这个节点是否被感染,而是直接将自身的拷贝向所有邻居节点发送,它自身则会留在当前节点。所以一个节点有可能存在多个病毒。
  • 现在已经知道黑客在一开始在K个节点上分别投放了一个病毒。

举个例子,假设切断部分网络连接后学校网络如下图所示,由4个节点和4条链接构成。最开始只有节点1上有病毒。

最开始节点1向节点2和节点3传送了病毒,自身留有1个病毒:

其中一个病毒到达节点2后,向节点3传送了一个病毒。另一个到达节点3的病毒向节点4发送自己的拷贝:

当从节点2传送到节点3的病毒到达之后,该病毒又发送了一份自己的拷贝向节点4。此时节点3上留有2个病毒:

最后每个节点上的病毒为:

小Hi和小Ho根据目前的情况发现一段时间之后,所有的节点病毒数量一定不会再发生变化。那么对于整个网络来说,最后会有多少个病毒呢?

提示:拓扑排序的应用

输入

第1行:3个整数N,M,K,1≤K≤N≤100,000,1≤M≤500,000

第2行:K个整数A[i],A[i]表示黑客在节点A[i]上放了1个病毒。1≤A[i]≤N

第3..M+2行:每行2个整数 u,v,表示存在一条从节点u到节点v的网络链接。数据保证为无环图。1≤u,v≤N

输出

第1行:1个整数,表示最后整个网络的病毒数量 MOD 142857

样例输入
4 4 1
1
1 2
1 3
2 3
3 4
样例输出
6


http://hihocoder.com/contest/hiho48/problem/1

描述

小Hi和小Ho所在学校的校园网被黑客入侵并投放了病毒。这事在校内BBS上立刻引起了大家的讨论,当然小Hi和小Ho也参与到了其中。从大家各自了解的情况中,小Hi和小Ho整理得到了以下的信息:

  • 校园网主干是由N个节点(编号1..N)组成,这些节点之间有一些单向的网路连接。若存在一条网路连接(u,v)链接了节点u和节点v,则节点u可以向节点v发送信息,但是节点v不能通过该链接向节点u发送信息。
  • 在刚感染病毒时,校园网立刻切断了一些网络链接,恰好使得剩下网络连接不存在环,避免了节点被反复感染。也就是说从节点i扩散出的病毒,一定不会再回到节点i。
  • 当1个病毒感染了节点后,它并不会检查这个节点是否被感染,而是直接将自身的拷贝向所有邻居节点发送,它自身则会留在当前节点。所以一个节点有可能存在多个病毒。
  • 现在已经知道黑客在一开始在K个节点上分别投放了一个病毒。

举个例子,假设切断部分网络连接后学校网络如下图所示,由4个节点和4条链接构成。最开始只有节点1上有病毒。

最开始节点1向节点2和节点3传送了病毒,自身留有1个病毒:

其中一个病毒到达节点2后,向节点3传送了一个病毒。另一个到达节点3的病毒向节点4发送自己的拷贝:

当从节点2传送到节点3的病毒到达之后,该病毒又发送了一份自己的拷贝向节点4。此时节点3上留有2个病毒:

最后每个节点上的病毒为:

小Hi和小Ho根据目前的情况发现一段时间之后,所有的节点病毒数量一定不会再发生变化。那么对于整个网络来说,最后会有多少个病毒呢?

提示:拓扑排序的应用

输入

第1行:3个整数N,M,K,1≤K≤N≤100,000,1≤M≤500,000

第2行:K个整数A[i],A[i]表示黑客在节点A[i]上放了1个病毒。1≤A[i]≤N

第3..M+2行:每行2个整数 u,v,表示存在一条从节点u到节点v的网络链接。数据保证为无环图。1≤u,v≤N

输出

第1行:1个整数,表示最后整个网络的病毒数量 MOD 142857

样例输入
4 4 1
1
1 2
1 3
2 3
3 4
样例输出
6

这道题让我进一步了解了拓扑,按以前拓扑解法,超时不说,建立关系时数组很大,开不开,所以,这道题很好的解决了
#include <iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<stack>
using namespace std;
vector<int> v[100005];
int  ingree[100000+5];
int A[100000+5];
int main()
{
    int n,m,k;
    int x,y;
    scanf("%d%d%d",&n,&m,&k);
    memset(A,0,sizeof(A));
    memset(ingree,0,sizeof(ingree));
    for(int i=0;i<k;i++)
    {
          scanf("%d",&x);
          A[x]++;
    }
    for(int i=0;i<m;i++)
    {
          scanf("%d%d",&x,&y);
          int flag=0;
          for(k=0;k<v[x].size();k++)    //没有这个也能过,但是最好还是要加上
          if(v[x][k]==y) {flag=1;break;}
          if(!flag)
          {
             v[x].push_back(y);
             ingree[y]++;
          }

    }
    stack<int> q;
    int sum=0;
    for(int i=1;i<=n;i++)
    if(ingree[i]==0)
    q.push(i);
    while(!q.empty())
    {
           int f=q.top();
           q.pop();
           sum=(sum+A[f])%142857;
           for(int i=0;i<v[f].size();i++)
           {
               int h=v[f][i];
               ingree[h]--;
               if(ingree[h]==0)
                q.push(h);
               A[h]=(A[h]+A[f])%142857;
           }
    }
    printf("%d\n",sum%142857);
    return 0;
}


描述

小Hi和小Ho所在学校的校园网被黑客入侵并投放了病毒。这事在校内BBS上立刻引起了大家的讨论,当然小Hi和小Ho也参与到了其中。从大家各自了解的情况中,小Hi和小Ho整理得到了以下的信息:

  • 校园网主干是由N个节点(编号1..N)组成,这些节点之间有一些单向的网路连接。若存在一条网路连接(u,v)链接了节点u和节点v,则节点u可以向节点v发送信息,但是节点v不能通过该链接向节点u发送信息。
  • 在刚感染病毒时,校园网立刻切断了一些网络链接,恰好使得剩下网络连接不存在环,避免了节点被反复感染。也就是说从节点i扩散出的病毒,一定不会再回到节点i。
  • 当1个病毒感染了节点后,它并不会检查这个节点是否被感染,而是直接将自身的拷贝向所有邻居节点发送,它自身则会留在当前节点。所以一个节点有可能存在多个病毒。
  • 现在已经知道黑客在一开始在K个节点上分别投放了一个病毒。

举个例子,假设切断部分网络连接后学校网络如下图所示,由4个节点和4条链接构成。最开始只有节点1上有病毒。

最开始节点1向节点2和节点3传送了病毒,自身留有1个病毒:

其中一个病毒到达节点2后,向节点3传送了一个病毒。另一个到达节点3的病毒向节点4发送自己的拷贝:

当从节点2传送到节点3的病毒到达之后,该病毒又发送了一份自己的拷贝向节点4。此时节点3上留有2个病毒:

最后每个节点上的病毒为:

小Hi和小Ho根据目前的情况发现一段时间之后,所有的节点病毒数量一定不会再发生变化。那么对于整个网络来说,最后会有多少个病毒呢?

提示:拓扑排序的应用

输入

第1行:3个整数N,M,K,1≤K≤N≤100,000,1≤M≤500,000

第2行:K个整数A[i],A[i]表示黑客在节点A[i]上放了1个病毒。1≤A[i]≤N

第3..M+2行:每行2个整数 u,v,表示存在一条从节点u到节点v的网络链接。数据保证为无环图。1≤u,v≤N

输出

第1行:1个整数,表示最后整个网络的病毒数量 MOD 142857

样例输入
4 4 1
1
1 2
1 3
2 3
3 4
样例输出
6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值