时间限制:
10000ms
单点时限:
1000ms
内存限制:
256MB
-
5 5 3 5 3 2 4 2 3 4 5 1
样例输出
-
1 5 3 4 2 3
-
-
-
-
-
-
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int N=5050; int M[N][N]; int v,u,n,m,k,cnt,ans; int Path[N],pathsize; void DFS(int u) { Path[pathsize++]=u;//入栈 for(int i=1; i<=n; i++) { if(M[u][i])//删除此边,注意此题可能有重边,赋值0会WA { M[u][i]--; M[i][u]--; DFS(i); break; } } } void Fleury(int x) { int flag; pathsize=0; Path[pathsize++]=x; while(pathsize>0) { flag=true; for(int i=1; i<=n; i++) { if(M[Path[pathsize-1]][i])// 试图搜索一条边不是割边(桥) { flag=false; break; } } if(flag)// 如果没有点可以扩展,输出并出栈 { if(pathsize!=1) printf("%d ",Path[--pathsize]); else printf("%d",Path[--pathsize]); } else { DFS(Path[--pathsize]); } } puts(""); } int main() { scanf("%d%d",&n,&m); memset(M,0,sizeof(M)); for(int i=0; i<m; i++) { scanf("%d%d",&u,&v);//将标记边是否存在改为记录边的数量。否则会WA M[u][v]++; M[v][u]++; } int start=1; //如果存在奇数顶点,则从奇数顶点出发,否则从顶点0出发 for(int i=1; i<=n; i++) { cnt=0; for(int j=1; j<=n; j++) { cnt+=M[i][j]; } if(cnt&1) { start=i; } } Fleury(start); return 0; }
描述
在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌。
主角继续往前走,面前出现了一座石桥,石桥的尽头有一道火焰墙,似乎无法通过。
小Hi注意到在桥头有一张小纸片,于是控制主角捡起了这张纸片,只见上面写着:
将M块骨牌首尾相连放置于石桥的凹糟中,即可关闭火焰墙。切记骨牌需要数字相同才能连接。 ——By 无名的冒险者
小Hi和小Ho打开了主角的道具栏,发现主角恰好拥有M快骨牌。
小Ho:也就是说要把所有骨牌都放在凹槽中才能关闭火焰墙,数字相同是什么意思?
小Hi:你看,每一块骨牌两端各有一个数字,大概是只有当数字相同时才可以相连放置,比如:
小Ho:原来如此,那么我们先看看能不能把所有的骨牌连接起来吧。
输入
第1行:2个正整数,N,M。分别表示骨牌上出现的最大数字和骨牌数量。1≤N≤1,000,1≤M≤5,000
第2..M+1行:每行2个整数,u,v。第i+1行表示第i块骨牌两端的数字(u,v),1≤u,v≤N
输出
第1行:m+1个数字,表示骨牌首尾相连后的数字
比如骨牌连接的状态为(1,5)(5,3)(3,2)(2,4)(4,3),则输出"1 5 3 2 4 3"
你可以输出任意一组合法的解。