CUDA 11.7 版本下安装Tensorflow-gpu以及Keras (Windows以及Ubuntu)

记录:在复现论文代码时碰到使用keras环境,于是在自己windows系统的台式机(RTX 3080;CUDA 11.7)上进行了安装,但是发现台式机的显存无法支持程序的运行。于是将一摸一样的环境配置到更大现存的Ubuntu服务器(CUDA 11.7)上,但配置环境出错,一直无法调用GPU。经过一天的摸索,从网上其他博客中找到答案,虽然不懂其中的道理,但先记录下来。


1. 待配置环境的版本

  • Python: 3.8.0
  • CUDA: 11.3.1
  • cuDNN: 8.2.1
  • Tensorflow-gpu: 2.7.0
  • Keras: 2.7.0

2. Windows下使用conda和pip安装Tensorflow-gpu以及Keras

  • 首先在Conda下创建虚拟环境且激活:
    conda create -n tf-gpu python=3.8.0
    conda activate tf-gpu
  • 在命令行中安装cudatoolkit:
    conda install cudatoolkit=11.3.1
  • 在命令行中安装cudnn:
    conda install cudnn=8.2.1
  • 通过pip命令安装Tensorflow-gpu:
    pip install tensorflow-gpu==2.7.0
  • 也可以使用清华源使安装速度提升(注意与上一步目的相同):
    pip install tensorflow-gpu==2.7.0 -i https://pypi.tuna.tsinghua.edu.cn/simple --user
    在这里插入图片描述
  • 检查Tensorflow是否可用:
    在这里插入图片描述
  • 使用tf.test.is_gpu_available()检查Tensorflow中是否可用GPU,出现“True”则可用,出现“Flase”则表示GPU不可用。
  • 接着同样使用pip命令安装keras(使用清华源加速):
    pip install keras==2.7.0 -i https://pypi.tuna.tsinghua.edu.cn/simple --user
    在这里插入图片描述

3. Ubuntu下使用conda和pip安装Tensorflow-gpu以及Keras

  • 使用nvidia-smi查看已有CUDA版本为11.7,待配置的环境版本与Windows配置的版本一致:
    在这里插入图片描述
  • 安装Tensorflow方法与上述Windows中的方法一致,然而我在Ubuntu中使用tf.test.is_gpu_available()检查是否能够使用GPU时出现“Flase”:
    在这里插入图片描述
  • 检查上面的提示报错信息,有这么一句话值得注意(大意是无法找到动态库 libcudnn.so.8):
Could not load dynamic library 'libcudnn.so.8'; dlerror: libcudnn.so.8: cannot open shared object file: No such file or directory
  • 我们通过以下几行代码来解决上述问题:
    -locate libcudnn.so.8 (找到该动态库)
    在这里插入图片描述
    可以看到上述图片中找到了两个locate libcudnn.so.8的路径,由于我安装的cudnn=8.2.1,所以我以第3行找到的路径为接下来所需的动态库locate libcudnn.so.8的路径。
    -sudo vim /etc/profile (打开环境文件)
    -在环境文件中插入下述语句(:插入,esc 退出编辑模式,wq 保存环境文件且退出):
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/xxx/miniconda3/pkgs/cudnn-8.2.1-cuda11.3_0/lib (注意其中/home/xxx/miniconda3/pkgs/cudnn-8.2.1-cuda11.3_0/lib为之前代码找到的动态库的路径)
    -source /etc/profile (更新环境文件)
  • 接下来重新激活上述环境且使用tf.test.is_gpu_available()检查是否能够使用GPU(此时提示“True”证明GPU可用。若仍然提示“Flase”,可按照上述几行代码,将无法加载的动态库都找到对应的路径且写入环境文件中。我在配置环境中除了libcudnn.so.8还有libcudart.so.11.0,通过上述几行代码成功的解决了无法使用GPU的问题):
    在这里插入图片描述
  • 接下来同Windows一样,使用pip install keras==2.7.0安装keras,检查后确认成功安装!

上述安装Tensorflow-gpu以及Keras过程中,我参考两个博客,传送:博客-1博客-2

<think>好的,用户想了解MobileNet项目的环境配置。首先,我需要回忆一下MobileNet的基本情况。MobileNet是Google开发的轻量级卷积神经网络,适合移动端和嵌入式设备。环境配置通常涉及Python、深度学习框架如TensorFlow或PyTorch,以及一些依赖库。 接下来,我应该分步骤来组织回答,确保结构清晰。用户可能需要从零开始配置环境,所以得详细说明每个步骤。首先考虑Python版本,现在主流的是Python 3.8到3.10,需要确认TensorFlow或PyTorch支持的版本。 然后是深度学习框架的选择。MobileNet有多个版本,比如MobileNetV1、V2、V3,可能对应不同的框架实现。用户可能使用TensorFlow的官方实现,或者PyTorch的版本,比如torchvision中的模型。需要分别给出两种框架的安装命令,比如pip install tensorflow或者pip install torch torchvision。 接下来是依赖库,比如NumPy、Matplotlib、OpenCV等,这些在数据处理和可视化中常用。需要列出常用的库和安装命令,如pip install numpy matplotlib opencv-python。 可能还需要提到CUDA和cuDNN的安装,如果用户使用NVIDIA GPU加速的话。不过如果用户是新手,可能暂时不需要GPU版本,可以建议先安装CPU版本,后续再考虑GPU支持。 然后,环境验证部分很重要,要确保用户安装正确。比如在Python中导入tensorflow并打印版本,或者加载MobileNet模型测试是否报错。给出示例代码,帮助用户验证。 常见问题方面,可能会遇到版本冲突、缺少动态链接库(比如CUDA的问题)、下载失败等。需要给出解决方法,比如使用虚拟环境,更换pip源,或者安装依赖库。 最后,项目初始化示例,比如使用TensorFlow加载预训练模型,进行预测。提供简单代码示例,让用户快速上手测试环境是否正常工作。 需要检查所有步骤是否符合系统级指令,比如数学公式是否正确使用$...$,独立公式用$$...$$,并且用中文回答。同时确保LaTeX语法正确,比如在提到版本号时不需要数学公式,但如果有方程或变量出现时要正确使用。不过在这个问题中可能涉及公式较少,主要关注代码和版本号。 可能还需要提醒用户根据具体需求选择框架,比如TensorFlow和PyTorch的区别,或者MobileNet的不同版本。不过环境配置部分可能不需要深入讨论模型结构,重点在安装步骤。 总结下来,回答的结构应该是:简介、环境配置步骤(Python、深度学习框架、依赖库)、可选GPU支持、环境验证、常见问题解决、示例代码。确保每个部分清晰,步骤明确,帮助用户逐步完成配置。</think>MobileNet环境配置指南(基于TensorFlow/PyTorch) 一、基础环境要求 1. 操作系统:Windows 10/11, Linux Ubuntu 18.04+ 或 macOS 10.15+ 2. Python版本:推荐 Python 3.8-3.10(需与深度学习框架版本匹配) 3. 内存:建议 ≥8GB 4. 存储空间:建议预留 ≥5GB 二、核心组件安装(分框架说明) ▶ TensorFlow 方案 ```bash # 创建虚拟环境 python -m venv mobilenet-env source mobilenet-env/bin/activate # Linux/macOS mobilenet-env\Scripts\activate # Windows # 安装基础组件 pip install tensorflow==2.12.0 # CPU版本 pip install tensorflow-gpu==2.12.0 # GPU版本(需提前配置CUDA) pip install numpy pillow matplotlib ``` ▶ PyTorch 方案 ```bash # 通过官方命令选择对应版本(以1.13.1为例) pip install torch==1.13.1 torchvision==0.14.1 --extra-index-url https://download.pytorch.org/whl/cu117 pip install opencv-python tqdm ``` 三、GPU加速支持(可选) 1. 确认硬件支持: - NVIDIA显卡(推荐RTX 20/30系列) - 驱动版本 ≥515.65.01 2. 安装CUDA工具包: - TensorFlow 2.12 → CUDA 11.8 - PyTorch 1.13 → CUDA 11.7 3. 安装cuDNN: - 需与CUDA版本严格对应 - 从NVIDIA开发者网站下载匹配版本 四、环境验证 ```python # TensorFlow验证 import tensorflow as tf print(tf.__version__) # 应输出2.12.0 model = tf.keras.applications.MobileNetV2() print(model.summary()) # PyTorch验证 import torch print(torch.__version__) # 应输出1.13.1 print(torch.cuda.is_available()) # 检查GPU支持 ``` 五、常见问题解决 1. 版本冲突问题: - 使用虚拟环境隔离项目 - 固定依赖版本:`pip freeze > requirements.txt` 2. 缺少DLL错误: - 安装Visual C++ Redistributable - 更新NVIDIA驱动 3. 下载失败: - 更换pip源:`pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple` - 指定国内镜像:`pip install -i https://mirrors.aliyun.com/pypi/simple/ ...` 六、项目初始化示例 ```python # TensorFlow图像分类示例 from tensorflow.keras.preprocessing import image from tensorflow.keras.applications.mobilenet_v2 import preprocess_input, decode_predictions img_path = 'test.jpg' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = preprocess_input(x) predictions = model.predict(x) print('Predicted:', decode_predictions(predictions, top=3)[0]) ``` 建议从官方仓库获取最新配置要求: - TensorFlow版:https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet - PyTorch版:https://pytorch.org/vision/stable/models/generated/torchvision.models.mobilenet_v2.html
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值