考虑到我国证券市场高频交易数据缺失严重,本文援用Amihudetal.(19
97)、Amihud(2002)和Pastor&Stambaugh(2003
)基于日频交易数据的方法来测算信息不对称程度。Amihudetal.(199
7)流动性比率指标LR和Amihud(2002)非流动性比率指标ILL都利用买卖
指令流(orderflow)与股票价格之间的相互作用关系来识别流动性。基本思路
是,逆向选择问题越轻,则股票流动性越高,单位成交量对应的价格变化越小。
测算方法
分别为
其中:
rit(k)表示i企业t年度第k个交易日的股票收益率
Vit(k)表示日成交量
Dit表示当年交易天数
Pastor&Stamb
augh(2003)认为,流动性差的股票会对指令流反应过度(overshoot)
,给定成交量不变,流动性越低则收益率反转(returnreversal)越大。
他们建议用收益率反转衡量流动性。
收益率反转指标,系数由下式估计得到
其中:
为超额收益率
rmt(k)表示按市值为权重加权的市场收益率(考虑到我
国股市的特殊性,我们以流通市值作为权重)。
在其他条件不变的情况下,信息不对称程
度越高,股票流动性越低,LR、ILL和GAM指标越大。
我们利用中国上市公司股
票交易的微观结构数据(按流通市值加权的市场收益率rm、公司个股日收益率r、日成交
量V和年度交易天数D)构建LR、ILL和GAM指标。但正如Hasbrouck(2
007)所指出的,上述每个指标既包含与非对称信息相关的成分,也可能包含与非对称信
息无关的成分,不能全面刻画信息不对称的全部特征。为此,我们遵循Bharathe
tal.(2009)的做法,对原始指标提取第一主成分,捕捉它们的共同变异信息也
即与非对称信息相关的成分,记为信息不对称指标ASY。
样本选择:全部A股2
000-2022年数据(初始数据是从1990年开始,选择的数据起点为2000年,
可自行在代码中更改时间范围)
剔除了有缺失值的公司样本
注:提供了剔除所需数
据和剔除代码,若无需做该项剔除处理,自行删除相关代码重新运行即可
每个压缩包都
附有初始数据,计算代码,参考文献和最终数据
[1]于蔚,汪淼军,金祥荣.政治
关联和融资约束:信息效应与资源效应[J].经济研究,2012,47(09):12
5-13
9.
[2]陈三可,赵蓓.研发投入、风险投资与企业融资约束——基于中国制
造业上市公司的实证分析[J].管理评论,2019,31(10):110-12
3.
[3]陶雄华,曹松威.证券交易所非处罚性监管与审计质量——基于年报问询函信息效
应和监督效应的分析[J].审计与经济研究,2019,34(02):8-1
8.
[
4]夏子航,马忠,陈登彪.信息不对称、会计稳健性与集团信贷模式[J].中南财经政
法大学学报,2015(05):88-97+107+15
9.
压缩包所含文件:
数据样例:
分年份数据量统计:
缩尾后的描述性统计结果:
下载链接:https://download.csdn.net/download/weixin_45892228/89108443点击下载:2000-2022年信息不对称指标ASY(stata计算)