倾向匹配得分模型 PSM 及 Stata 具体操作步骤

目录

一、引言

二、文献综述

三、理论原理

四、实证模型

五、程序代码及解释

六、代码运行结果

七、稳健性检验

八、结论


一、引言

倾向匹配得分模型(Propensity Score Matching,PSM)是一种在观察性研究中用于减少选择偏差的常用方法。通过估计个体接受某种处理(例如参与某个项目、接受某种治疗等)的概率,即倾向得分,然后基于倾向得分对处理组和对照组进行匹配,以构建类似于随机实验的样本,从而使得处理组和对照组在可观测特征上具有可比性。

二、文献综述

在社会科学和医学研究等领域,PSM 方法得到了广泛的应用。Rosenbaum 和 Rubin(1983)首次提出了倾向得分匹配的概念和方法,为后续的研究奠定了基础。他们指出,通过倾向得分进行匹配,可以有效地控制观察性研究中的混杂因素,从而更准确地评估处理效应。

例如,Smith 和 Todd(2005)在研究教育政策对学生成绩的影响时,运用 PSM 方法来解决样本选择偏差问题,使得研究结果更具可靠性。Athey 和 Imbens(2006)则在处理经济数据时,采用 PSM 方法来评估政策干预的效果,为政策制定提供了有力的依据。

此外,Hirano 和 Imbens(2001)对 PSM 的理论和应用进行了深入的探讨,进一步完善了该方法的理论框架。在医学领域,Austin(2011)等人利用 PSM 方法评估了不同医疗治疗方案的效果,为临床决策提供了重要的参考。

这些研究都充分展示了 PSM 方法在解决观察性研究中选择偏差问题的有效性和实用性。

三、理论原理

倾向匹配得分模型(PSM)的理论基础建立在反事实框架和条件独立性假设之上。

在观察性研究中,我们通常将个体分为处理组(接受了某种处理或干预)和对照组(未接受处理或干预)。然而,由于个体并非随机分配到处理组和对照组的,可能存在一些混杂因素导致两组个体在特征上存在系统性差异,从而影响对处理效应的准确评估。

四、实证模型

  1. 估计倾向得分
    • 通常采用 Logistic 回归或 Probit 回归来估计倾向得分。假设处理变量为 Treatment,协变量为 X1X2、... 、Xn,则 Logistic 回归模型可以表示为:
<
### PSM 的含义及其在计算机领域的应用 #### 倾向得分匹配 (Propensity Score Matching, PSM) 定义 PSM 是一种统计方,用于减少观察研究中的偏差。它通过估计个体接受某种处理的概率来平衡协变量分布,从而实现对照组和实验组之间的可比性[^3]。 #### PSM 在计算机科学与技术中的用途 在计算机领域,PSM 可被应用于数据分析、机器学习模型评估以及因果推断等领域。例如,在分析某个算或系统的性能改进效果时,可以利用 PSM控制其他可能影响结果的因素,进而更准确地判断目标因素的作用[^2]。 以下是 PSM 技术的一些具体应用场景: 1. **数据预处理阶段** 当训练集存在样本不平衡问题时,可以通过 PSM 对不同类别间的特征进行加权调整,使得分类器能够更好地适应实际情况。 2. **因果关系建模** 如果需要探究某些输入参数的变化如何影响输出指标(如时间复杂度),那么借助于 PSM 能够有效排除无关噪声干扰项的影响。 3. **系统优化验证** 针对硬件设备或者软件平台升级前后对比测试场景下,采用 DID-PSM 组合策略可以帮助识别真正由改动带来的增益部分而非随机波动所致差异。 ```python import pandas as pd from sklearn.linear_model import LogisticRegression def calculate_propensity_scores(dataframe, treatment_column): """ 使用逻辑回归计算倾向得分 参数: dataframe (pd.DataFrame): 数据框对象 treatment_column (str): 处理变量列名 返回值: list: 含有每个样本对应倾向得分的结果列表 """ covariates = [col for col in dataframe.columns if col != treatment_column] model = LogisticRegression() X = dataframe[covariates].values y = dataframe[treatment_column].values model.fit(X, y) propensity_scores = model.predict_proba(X)[:, 1] return propensity_scores.tolist() # 示例调用函数 df_example = pd.read_csv('example_data.csv') scores = calculate_propensity_scores(df_example, 'treated_group_flag') print(scores[:5]) # 打印前五个样本的倾向得分 ``` 上述代码片段展示了基于逻辑回归模型估算倾向得分的一个简单例子。实际操作过程中还需要考虑更多细节设置以满足特定业务需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值