牛客网暑期ACM多校训练营(第一场)

版权声明:版权所有,转载请标明 https://blog.csdn.net/zxwsbg/article/details/81145933

比赛爆0,赛后补题。


  • J. Different Integers

题意:给n个数和q个询问,每个询问有一个[l,r]区间,要求a[1],a[2]...a[l-1],a[r+1]...,a[n]中有多少个不同的树。

题解:比赛的时候用主席树做,但是超时了。赛后补题,发现是用离线的树状数组。

          首先,可以将n扩充为原来的两倍,那么原数组的询问可以转化为求从a[r]到a[l+n]共有多少个不同的数。

          其次,用pre[i]记录从a[1]-a[i]有多少个不同的数字,那么对于a[l...r]的答案就为pre[r] - pre[l-1] + 在a[l...r]和a[1...l-1]同时出现的数字的种类,而对于如何求在a[l...r]和a[1...l-1]同时出现的数字的种类,可以考虑使用树状数组维护,树状数组的第i个点表示a[i]是否已经在1...l出现过,对于每个查询只需要查树状数组中l~r的区间和即可

            在实际运用中,可以将所有的询问按照左端点从小到大排序,然后依次向后添加即可。

#include <bits/stdc++.h>
using namespace std;

const int N = 2e5+5;

int a[N];
int pre[N]; //记录前i个数中有多少个不同的数
int ans[N];
bool vis[N];
int last[N]; //记录某一个数最后一次出现的位置
int nxt[N];  //nxt[i]=j表示第i个位置的数下一次出现的位置是j
int tree[N];
int n,q;

struct node{
    int l,r,id;
}x[N];

bool cmp(const node &a,const node &b)
{
    return a.l<b.l;
}

int lowbit(int x)
{
    return x & -x;
}

void update(int x,int y)
{
    for(int i=x;i<N;i+=lowbit(i))
        tree[i] += y;
}

int query(int x) //注意,树状数组这里是>0,否则会死循环
{
    int ans = 0;
    for(int i=x;i>0;i-=lowbit(i))
        ans += tree[i];
    return ans;
}

int getsum(int l,int r)
{
    return query(r)-query(l-1);
}

void init()
{
    memset(ans,0,sizeof(ans));
    memset(vis,0,sizeof(vis));
    memset(tree,0,sizeof(tree));
    memset(last,-1,sizeof(last));
    memset(nxt,-1,sizeof(nxt));
    memset(pre,0,sizeof(pre));
}
int main()
{
    while(~scanf("%d%d",&n,&q))
    {
        init();
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            a[i+n] = a[i];
        }
        n = n*2;
        pre[0] = 0;
        for(int i=1;i<=n;i++)
        {
            if(!vis[a[i]])
            {
                vis[a[i]] = 1;
                pre[i] = pre[i-1]+1;
            }
            else
                pre[i] = pre[i-1];
            if(~last[a[i]]) //即last[a[i]]!=-1,表明这个数曾经出现过
                nxt[last[a[i]]] = i;
            last[a[i]] = i; //a[i]最后一次出现的位置赋给last[i]
        }
        for(int i=0;i<q;i++)
        {
            scanf("%d%d",&x[i].l,&x[i].r);
            x[i].l += n/2; //因为n做过倍增,这里完成的是区间的转换
            swap(x[i].l,x[i].r);
            x[i].id = i;
        }
        sort(x,x+q,cmp);
        int cnt = 1;
        for(int i=0;i<q;i++)
        {
            while(cnt<x[i].l) //没有等于号
            {
                if(~nxt[cnt]) //如果cnt位置的数在之后出现过,那么树状数组加标记,表明在位置1-(l-1)中这个数出现过
                    update(nxt[cnt],1);
                cnt++;
            }
            ans[x[i].id] = pre[x[i].r]-pre[x[i].l-1]+getsum(x[i].l,x[i].r);
        }
        for(int i=0;i<q;i++)
            cout<<ans[i]<<endl;
    }
    return 0;
}

      在树状数组update的时候,如果第i个节点在1-l出现过,那么就给这个节点update(1),这时候就有了一个疑问,万一1-l后面还有一个跟第i节点一样的数,那么不就是更新了两次吗,其实这是没有关系的。因为树状数组对i节点求和,求的是1-i相同的数的个数。

      关于本题莫队算法的解法,我在另一篇博客中写到了。

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页