NUIST第一届程序设计大赛团队赛题解

本次比赛,AK两题为签到题,

A. 负鼠的追求者

解法1

求[1,x]中与x互质的最大的数,由于x最大为5000,可以枚举[1,x]中的每个数来依次验证是否满足gcd(i,x)=1,时间复杂度为 O ( T ∗ n log ⁡ n ) O(T*n \log n) O(Tnlogn)

#include <iostream>
using namespace std;


int gcd(int a,int b) {
    if(!b) return a;
    return gcd(b,a%b);
}

int T,x;

int main() {
    cin >> T;
    while (T--) {
        cin >> x;
        int f;
        for(int i=1;i<=x;i++) {
            if(gcd(i,x)==1) f = i;
        }
        cout << f << endl;
    }
    return 0;
}

解法2

观察可得,对于任意一个大于1的自然是x,x与x-1必然互质,直接输出x-1即可。注意:x=1时要特殊考虑。

#include <iostream>
using namespace std;

int T,x;

int main() {
    cin >> T;
    while(T--) {
        cin >> x;
        cout << (x==1?1:x-1) << endl;
    }
    return 0;
}

B. Game

把1-n每个数都看作一个节点,并且给相互连通的节点加边,记再次排列的得到的数组为p,如果i和p[i]不连通,那么输出NO。若所有的i都可以走到p[i],那么输出YES。

解法1

用邻接矩阵表示i,j两点是否连通,再跑一遍Floyd求出结果。

#include <cstring>
#include <iostream>
using namespace std;

const int maxn = 105;
const int inf = 0x3f3f3f3f;
int n, p[maxn], a[maxn][maxn], d[maxn], T;

int main() {
    scanf("%d", &T);
    while (T--) {
        memset(a, inf, sizeof(a));
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) scanf("%d", &p[i]);
        for (int i = 1; i <= n; i++) scanf("%d", &d[i]);
        for (int i = 1; i <= n; i++) {
            a[i][i] = 1;
            for (int j = 1; j <= n; j++) {
                if (abs(i - j) == d[i] || abs(i - j) == d[j])
                    a[i][j] = a[j][i] = 1;
            }
        }
        for (int k = 1; k <= n; k++) {
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= n; j++)
                    a[i][j] = min(a[i][j], a[i][k] + a[k][j]);
            }
        }
        bool flag = 1;
        for (int i = 1; i <= n; i++) {
            if (a[i][p[i]] == inf) flag = 0;
        }
        if (flag)
            puts("YES");
        else
            puts("NO");
    }
    return 0;
}

解法2

用邻接表建图,对1-n每个节点都跑一遍DFS/BFS即可。

#include <cstring>
#include <iostream>
#include <vector>
using namespace std;

const int maxn = 105;
int n, d[maxn], p[maxn], T;
vector<int> e[maxn];
bool flag, vis[maxn];

void dfs(int x, int pre, int dest) {
    if (x == dest) {
        flag = 1;
        return;
    }
    vis[x] = 1;
    for (int i = 0; i < e[x].size(); i++) {
        int v = e[x][i];
        if (!vis[v]) dfs(v, x, dest);
    }
}

int main() {
    scanf("%d", &T);
    while (T--) {
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) scanf("%d", &p[i]);
        for (int i = 1; i <= n; i++) scanf("%d", &d[i]);
        for (int i = 1; i <= n; i++) {
            e[i].clear();
            e[i].push_back(i);
            for (int j = 1; j <= n; j++) {
                if (abs(i - j) == d[i] || abs(i - j) == d[j]) {
                    e[i].push_back(j);
                    e[j].push_back(i);
                }
            }
        }
        for (int i = 1; i <= n; i++) {
            memset(vis, 0, sizeof(vis));
            flag = 0;
            dfs(i, -1, p[i]);
            if (!flag) {
                break;
            }
        }
        if (flag)
            puts("YES");
        else
            puts("NO");
    }
    return 0;
}

C. 犯困的负鼠

暴力是肯定会TLE的,题解提供离散化+分块的做法。

#include <algorithm>
#include <cmath>
#include <cstdio>
using namespace std;

const int maxn = 40000;
const int maxn_SQRT = 200;

// 离散化用到的 set(集合)和 tot(不重复的数字数量)
int n, a[maxn + 1], set[maxn + 1], tot;
// 块大小、块数量、cnt[x][i] 表示 x 这个数在前 i 个块中的出现次数,ans[l][r]
// 表示第 l 个块到第 r 个块的答案
int blockSize, blockCnt, cnt[maxn + 1][maxn_SQRT + 1],
    ans[maxn_SQRT + 1][maxn_SQRT + 1];

// 离散化
inline void discrete() {
    copy(a + 1, a + n + 1, set + 1);
    sort(set + 1, set + n + 1);
    int *end = unique(set + 1, set + n + 1);
    for (int i = 1; i <= n; i++) a[i] = lower_bound(set + 1, end, a[i]) - set;

    tot = end - (set + 1);  // 区间 [set + 1, end) 的长度
}

// 给一个位置,求所在块编号
inline int blockID(int i) { return (i - 1) / blockSize + 1; }

// 给一个块编号,求其区间
inline void blockInterval(int i, int &l, int &r) {
    l = (i - 1) * blockSize + 1;
    r = i * blockSize;

    // 防止越界
    r = min(r, n);
}

// 预处理
inline void prepare() {
    // 以根号 n 分块
    blockSize = ceil(sqrt(n));
    blockCnt = blockID(n);

    // cnt[x][i] 表示 x 这个数在第 i 个块中的出现次数
    for (int i = 1; i <= n; i++) {
        int bi = blockID(i);
        cnt[a[i]][bi]++;
    }

    // 做前缀和
    for (int i = 1; i <= blockCnt; i++) {
        for (int j = 1; j <= tot; j++) cnt[j][i] += cnt[j][i - 1];
    }

    // 求 ans[l][r]
    for (int i = 1; i <= blockCnt; i++) {
        // cnt[x] 表示 x 这个数在第 [i, j] 这个块区间内的出现次数
        static int cnt[maxn + 1];
        fill(cnt + 1, cnt + tot + 1, 0);  // 清空 cnt

        int tmp = 0;  // 表示当前答案
        for (int j = i; j <= blockCnt;
             j++)  // j 从 i 开始枚举,每次向后扩充一个块
        {
            // 将第 j 个块加入到答案中
            int l, r;
            blockInterval(j, l, r);

            // 枚举第 j 个块的所有数
            for (int k = l; k <= r; k++) {
                cnt[a[k]]++;

                // 更新答案
                // 注意,根据题意,出现次数相同时取较小值
                if (!tmp || cnt[a[k]] > cnt[tmp] ||
                    (cnt[a[k]] == cnt[tmp] && a[k] < tmp))
                    tmp = a[k];
            }

            // 记录答案
            ans[i][j] = tmp;
        }
    }
}

// 暴力计算 [l, r] 的答案
inline int force(int l, int r) {
    static int cnt[maxn + 1];

    int ans = 0;
    for (int i = l; i <= r; i++) {
        cnt[a[i]]++;

        // 更新答案
        if (!ans || cnt[a[i]] > cnt[ans] ||
            (cnt[a[i]] == cnt[ans] && a[i] < ans))
            ans = a[i];
    }

    // 清空 cnt,注意不能 memset 或者 fill
    // 因为我们需要 force() 的时间复杂度与 [l, r]
    // 的区间长度有关,与序列中总数的数量无关
    for (int i = l; i <= r; i++) cnt[a[i]]--;

    return ans;
}

// 计算 a 中的 n 个数的答案(这些数是在查询时不在块内的数)
// 统计数的出现次数时,额外加入每个数在 [lb, rb] 这些(完整的)块内的出现次数
// 并将新答案与旧答案 oldAns 取较优
inline int calcPart(int lb, int rb, int *a, int n, int &oldAns,
                    int &oldAnsCnt) {
    static int cnt[maxn + 1];

    // 加入这些数在块内的出现次数
    for (int i = 1; i <= n; i++) {
        cnt[a[i]] =
            ::cnt[a[i]][rb] -
            ::cnt[a[i]][lb - 1];  // 注意不能是 +=,因为数可能重复,避免重复加入
    }

    for (int i = 1; i <= n; i++) {
        cnt[a[i]]++;  // 统计出现次数
    }

    int ans = oldAns, ansCnt = oldAnsCnt;
    for (int i = 1; i <= n; i++) {
        int newCnt = cnt[a[i]];

        // 更新答案
        if (!ans || newCnt > ansCnt || (newCnt == ansCnt && a[i] < ans)) {
            ans = a[i];
            ansCnt = newCnt;
        }
    }

    // 清空 cnt
    for (int i = 1; i <= n; i++) {
        cnt[a[i]] = 0;
    }

    return ans;
}

// 求块 [lb, rb] 内的答案
inline void blockAns(int lb, int rb, int &ans, int &ansCnt) {
    ans = ::ans[lb][rb];
    ansCnt = cnt[ans][rb] - cnt[ans][lb - 1];  // 前缀和作差
}

// 查询 [l, r] 间的答案
inline int query(int l, int r) {
    int lb = blockID(l), rb = blockID(r);
    if (lb == rb || lb + 1 == rb)  // 如果两端点在同一块或相邻块,则暴力计算
    {
        return force(l, r);
    }

    // 先计算块内的部分
    int ans, ansCnt;
    // [lb + 1, rb - 1] 是完整的块,lb 和 rb 不是完整的块
    blockAns(lb + 1, rb - 1, ans, ansCnt);

    // 取出块之外的数
    int cnt = 0;               // 块之外的数的数量
    static int tmp[maxn + 1];  // 块之外的数

    int ll, lr;
    blockInterval(lb, ll, lr);
    // 左半边块之外的
    for (int i = l; i <= lr; i++) tmp[++cnt] = a[i];

    int rl, rr;
    blockInterval(rb, rl, rr);
    // 右半边块之外的
    for (int i = rl; i <= r; i++) tmp[++cnt] = a[i];

    // 计算块外的部分,更新答案
    // [lb + 1, rb - 1] 是完整的块
    return calcPart(lb + 1, rb - 1, tmp, cnt, ans, ansCnt);
}

int main() {
    int m;
    scanf("%d %d", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%d", &a[i]);

    discrete();
    prepare();

    int lastAns = 0;  // 上一次的答案
    while (m--) {
        int l, r;
        scanf("%d %d", &l, &r);

        // 强制在线
        l = (l + lastAns - 1) % n + 1;
        r = (r + lastAns - 1) % n + 1;
        if (l > r) swap(l, r);

        // 将离散化后的值对应到原值
        printf("%d\n", lastAns = set[query(l, r)]);
    }

    return 0;
}

D. 天天爱跑步

首先,对于lcm(w,b)和其倍数,在这些位置上syf和cjy一定是打平的。记这些位置为x。
对于任意x[i]+[0,min(w,b)-1] 的位置上,两人也一定是打平的。
于是我们就求合法范围内所有 x[i]+[0,min(w,b)-1] 的格点数即可。

注意:lcm可能求出会爆long long, 所以需要一些小优化。

#include <iostream>
using namespace std;

typedef long long ll;

ll t, w, b, ans;

ll gcd(ll a, ll b) {
    if (!b) return a;
    return gcd(b, a % b);
}

ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }

ll T;

int main() {;
    cin >> T;
    while (T--) {
        ans = 0;
        cin >> t >> w >> b;
        ll g = lcm(w, b);
        ll mini = min(min(w, b), t + 1);
        ans += mini - 1;
        ll k = t / w * gcd(w, b) / b;
        ans += k * mini;
        if (k) {
            ll f = t % g;
            if (f < mini) {
                ans -= mini;
                ans += f + 1;
            }
        }
        ll d = gcd(ans, t);
        ans /= d;
        t /= d;
        cout << ans << '/' << t << endl;
    }
    return 0;
}

E. 愉快的负鼠

如果一个数能被2-10中的所有数整除,那么它仅需满足能被2,3,5,7整除即可,因为其他数都是合数,而合数必然可以表示成若干个素数的乘积。例如如果能被10整除,那么必然能被2和5整除。

推出上述结论后,本题就变成了一个高中组合数学题,最终结果即为:

#include <iostream>
#include <vector>
using namespace std;

typedef long long ll;

ll ans, n, T;
vector<int> a, f;

int main() {
    cin >> T;
    while (T--) {
        cin >> n;
        ans = n - n / 2 - n / 3 - n / 5 - n / 7 + n / (2 * 3) + n / (2 * 5) +
              n / (2 * 7) + n / (3 * 5) + n / (3 * 7) + n / (5 * 7) -
              n / (2 * 3 * 5) - n / (2 * 3 * 7) - n / (2 * 5 * 7) -
              n / (3 * 5 * 7) + n / (2 * 3 * 5 * 7);
        cout << ans << endl;
    }
    return 0;
}

F. Relative Molecular Mass

字符串处理题。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>

using namespace std;

const int CM = 150;

struct Node {
    double value;
    Node* next[CM];
    Node() { value = 0; memset(next, 0, sizeof(next));};
    void construct(char* s, double value) {
        if (!*s) { this->value = value; return; }
        if (!next[*s]) { next[*s] = new Node();}
        next[*s]->construct(s + 1, value);
    }
} root, *cur;

char *x;

double solve() {
    double ret = 0, val = 0;
    for (; *x != 0 && *x != ')';) {
        if (isalpha(*x)) {
            if (cur->next[*x]) {
                cur = cur->next[*x];
            } else  {
                ret += val;
                val = 0;
                cur = root.next[*x];
            }
            if (cur->value) {
                val = cur->value;
            }
            ++x;
        } else if (isdigit(*x)) {
            int t = 0;
            for (; isdigit(*x); ++x) {t *= 10; t += *x - '0';}
            if (val) {
                ret += val * t;
                val = 0;
                cur = &root;
            } else {
                ret += t * solve();
            }
        } else if (*x == '(') {
            ++x;
            ret += val;
            val = solve();
        }
    }
    ret += val;
    ++x;
    return ret;
}

int main() {
    int n, k;
    double v;
    char s[300], t[200];
    memset(root.next, 0, sizeof(root.next));
    scanf("%d%d", &n, &k);
    for (auto i = 0; i < n; i++) {
        scanf("%s%lf", s, &v);
        root.construct(s, v);
    }
    for (auto i = 0; i < k; i++) {
        scanf("%s", t);
        memset(s, 0, sizeof(s));
        int j = 0, c = 0;
        s[c++] = '(';
        for (j = 0; t[j]; j++) {
            if (t[j] == '.') {
                s[c++] = ')';
                s[c++] = '(';
            } else {
                s[c++] = t[j];
            }
        }
        s[c] = ')';
        cur = &root;
        x = s;
        auto ret = solve();
        printf("%.lf\n", ret);
    }
    return 0;
}

G. 后勤部长的晚会

本题让我们求二分图的不可行边(可行边的补集)。不过,本题不保证二分图的最大匹配是一组完备匹配。

使用Dicnic算法求最大流,Tarjan算法求强连通分量,最后逐一对边进行判定,时间复杂度 O ( E ∗ N + M ) O(E*\sqrt{N+M}) O(EN+M )

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#define N 10005  
#define M 100005
using namespace std;
int cnt = 1, n, m, t, head[2 * N], ans[M];
int d[2 * N];
int num, dfn[2 * N], low[2 * N], s[2 * N], c[2 * N];
bool vis[2 * N];
struct edge {
    int from, to, nxt, size;
} w[3 * M];
void add(int x, int y) {
    w[++cnt] = (edge){x, y, head[x], 1};
    head[x] = cnt;
    w[++cnt] = (edge){y, x, head[y], 0};
    head[y] = cnt;
}
bool bfs() {
    memset(d, 0, sizeof(d));
    queue<int> q;
    q.push(n + m + 1);
    d[n + m + 1] = 1;
    while (!q.empty()) {
        int x = q.front();
        q.pop();
        for (int i = head[x]; i; i = w[i].nxt) {
            int y = w[i].to;
            if (d[y] || !w[i].size) continue;
            d[y] = d[x] + 1;
            if (y == n + m + 2) return 1;
            q.push(y);
        }
    }
    return 0;
}
int dinic(int x, int flow) {
    if (x == n + m + 2) return flow;
    int rest = flow;
    for (int i = head[x]; i && rest; i = w[i].nxt) {
        int y = w[i].to;
        if (!w[i].size || d[y] != d[x] + 1) continue;
        int k = dinic(y, min(rest, w[i].size));
        if (!k) d[y] = 0;
        w[i].size -= k;
        w[i ^ 1].size += k;
        rest -= k;
    }
    return flow - rest;
}
void tarjan(int x) {
    dfn[x] = low[x] = ++num;
    s[++s[0]] = x;
    vis[x] = 1;
    for (int i = head[x]; i; i = w[i].nxt) {
        if (!w[i].size) continue;
        int y = w[i].to;
        if (!dfn[y]) {
            tarjan(y);
            low[x] = min(low[y], low[x]);
        } else if (vis[y])
            low[x] = min(dfn[y], low[x]);
    }
    if (dfn[x] == low[x]) {
        c[0]++;
        while (1) {
            int temp = s[s[0]];
            vis[temp] = 0;
            c[temp] = c[0];
            s[s[0]--] = 0;
            if (temp == x) break;
        }
    }
}
int main() {
    scanf("%d %d %d", &n, &m, &t);
    for (int i = 1; i <= t; i++) {
        int x, y;
        scanf("%d %d", &x, &y);
        add(x, n + y);
    }
    for (int i = 1; i <= n; i++) add(n + m + 1, i);
    for (int i = 1; i <= m; i++) add(n + i, n + m + 2);
    while (bfs()) int temp = dinic(n + m + 1, 0x3f3f3f3f);
    for (int i = 1; i <= n + m + 2; i++)
        if (!dfn[i]) tarjan(i);
    for (int i = 1; i <= t; i++) {
        int x = w[i * 2].from, y = w[i * 2].to;
        if (!w[i * 2].size || c[x] == c[y]) continue;
        ans[++ans[0]] = i;
    }
    printf("%d\n", ans[0]);
    for (int i = 1; i <= ans[0]; i++) printf("%d ", ans[i]);
    return 0;
}

H.摸鱼1

比较裸的二分。

二分最少需要的天数,然后从1~n枚举每一个判断是否能成立即可。但需要注意左右边界的初始条件。

#include <iostream>
using namespace std;

typedef long long ll;
const int maxn = 100005;

ll T,n,S,W,w[maxn],a[maxn];

bool check(ll x) {
    ll res = 0;
    for(int i=0;i<n;i++) {
        ll k = w[i] + a[i]*x;
        if(k>=W) res += k;
        if(res>=S) return 1;
    }
    return 0;
}

int main() {
    scanf("%lld",&T);
    while(T--) {
        scanf("%lld%lld%lld",&n,&S,&W);
        for(int i=0;i<n;i++) scanf("%lld",&w[i]);
        for(int i=0;i<n;i++) scanf("%lld",&a[i]);
        ll l = -1, r = 1e9;
        while(l<r-1) {
            ll mid = (l+r) / 2;
            if(check(mid)) r = mid;
            else l = mid;
        }
        printf("%lld\n",r);
    }
    return 0;
}

I. 摸鱼2

简单DP,公式见代码

#include <iostream>
#include <cstring>
using namespace std;

const int MOD = 10005;

int dp[3005];
int n, m, T, ans;

int main() {
    cin >> T;
    while (T--) {
        ans = 0;
        memset(dp, 0, sizeof(dp));
        cin >> n >> m;
        dp[0] = 1;
        dp[1] = m;
        for (int i = 2; i <= n; ++i) {
            for (int j = m; j; --j) {
                dp[j] = (dp[j] + dp[j - 1] * (m - j + 1)) % MOD;
            }
        }
        for (int i = 0; i <= m; ++i) 
			ans = (ans + dp[i]) % MOD;
        cout << ans << endl;
    }
    return 0;
}

J. ytF’s cupboard

计算几何。
由于底边长为r,而球的半径为 r 2 \frac{r}{2} 2r,所以可以先两个两个的放。

放到顶端时,我们的问题就在于能否在最顶上的弧下面再放一个。

记圆的半径为 r 2 \frac{r}{2} 2r,可得到 G H = ( 1 − 3 2 ) ∗ r GH=(1-\frac{\sqrt{3}}{2})*r GH=(123 )r,这三个圆堆起来需要的总高度为 2 r − G H 2r-GH 2rGH ,这样就可以求得最顶上是否还能放一个球。

#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std;

int main() {
    scanf("%d", &T);
    while (T--) {
        scanf("%d%d", &r, &h);
        int ans = h / r * 2;
        h %= r;
        if (h * 2 < r) {
            ++ans;
        } else if (h * 2 >= sqrt(3) * r) {
            ans += 3;
        } else {
            ans += 2;
        }
        printf("%d\n", ans);
    }
    return 0;
}

K. 打牌

如果满足条件,那么负鼠的牌数咕值和必然为总和的一半。写个三重for循环即可判断

#include <iostream>
#include <algorithm>
using namespace std;

int a[10];
int n = 6, sum, T;

int main() {
    cin >> T;
    while (T--) {
        sum = 0;
        for (int i = 0; i < n; i++) cin >> a[i], sum += a[i];
        bool flag = 0;
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                for (int k = j + 1; k < n; k++) {
                    if ((a[i] + a[j] + a[k]) * 2 == sum) {
                        flag = 1;
                    }
                }
            }
        }
        if(flag) cout << "YES" << endl;
        else cout << "NO" << endl;
    }
    return 0;
}

written by 施博文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

总想玩世不恭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值