传送门
题解:
如果能够求出有多少个不想交集合异或和为 0 0 0的话就好办了,这些集合的任意划分都满足条件。
构造集合幂级数 ( 1 + 2 x a i ) (1+2x^{a_i}) (1+2xai),则所有 ( 1 + 2 x a i ) (1+2x^{a_i}) (1+2xai)的异或卷积结果中 x ∅ x^{\empty} x∅的系数减一即为所求。
全部拿来做一遍FWT太浪费了,我们直接求多项式的和的FWT,然后考虑还原。
显然我们现在需要的是所有原多项式的对应点值的乘积。
注意到现在做一遍FWT求的是一般的沃尔什变换结果,由于原多项式是 ( 1 + 2 x a i ) (1+2x^{a_i}) (1+2xai)的形式,则原多项式的沃尔什变换结果的点值不是 − 1 -1 −1就是 3 3 3。
那么考虑有多少个原多项式在这里的点值为 − 1 -1 −1,设为 x x x,现在由于求了个和,显然 − x + 3 ⋅ ( n − x ) = f [ i ] -x+3\cdot(n-x)=f[i] −x+3⋅(n−x)=f[i],解出 x x x后,我们需要点值乘积为 ( − 1 ) x ⋅ 3 n − x (-1)^x\cdot 3^{n-x} (−1)x⋅3n−x,直接算出来带入后做IFWT就行了。
代码:
#include<bits/stdc++.h>
#define ll long long
#define re register
#define gc get_char
#define cs const
namespace IO{
inline char get_char(){
static cs int Rlen=1<<22|1;
static char buf[Rlen],*p1,*p2;
return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,Rlen,stdin),p1==p2)?EOF:*p1++;
}
template<typename T>
inline T get(){
char c;
while(!isdigit(c=gc()));T num=c^48;
while(isdigit(c=gc()))num=(num+(num<<2)<<1)+(c^48);
return num;
}
inline int getint(){return get<int>();}
}
using namespace IO;
cs int mod=998244353,inv2=mod+1>>1,inv4=(ll)inv2*inv2%mod;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline int mul(int a,int b){static ll r;r=(ll)a*b;return r>=mod?r%mod:r;}
inline int power(int a,int b,int res=1){
for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
return res;
}
cs int SIZE=1<<20|1;
int n,mx;
int S,invS;
int a[SIZE],pw[SIZE];
inline void FWT(int *A){
for(int re i=1;i<S;i<<=1)
for(int re j=0;j<S;j+=i<<1)
for(int re k=0;k<i;++k){
int x=A[j|k],y=A[i|j|k];
A[j|k]=add(x,y),A[i|j|k]=dec(x,y);
}
}
inline void IFWT(int *A){
FWT(A);for(int re i=0;i<S;++i)A[i]=mul(A[i],invS);
}
signed main(){
#ifdef zxyoi
freopen("chocolate.in","r",stdin);
#endif
n=getint();
a[0]=n;pw[0]=1;
for(int re i=1;i<=n;++i){
int v=getint();mx=std::max(mx,v);
a[v]+=2;pw[i]=mul(3,pw[i-1]);
}
S=1;while(S<=mx)S<<=1;
invS=power(S,mod-2);FWT(a);
for(int re i=0,nnn=mul(n,3);i<S;++i){
int p=mul(inv4,dec(nnn,a[i]));
a[i]=(p&1)?mod-pw[n-p]:pw[n-p];
}
IFWT(a);
std::cout<<dec(a[0],1)<<"\n";
return 0;
}