【UNR #2】【UOJ #310】黎明前的巧克力(FWT)

传送门


题解:

如果能够求出有多少个不想交集合异或和为 0 0 0的话就好办了,这些集合的任意划分都满足条件。

构造集合幂级数 ( 1 + 2 x a i ) (1+2x^{a_i}) (1+2xai),则所有 ( 1 + 2 x a i ) (1+2x^{a_i}) (1+2xai)的异或卷积结果中 x ∅ x^{\empty} x的系数减一即为所求。

全部拿来做一遍FWT太浪费了,我们直接求多项式的和的FWT,然后考虑还原。

显然我们现在需要的是所有原多项式的对应点值的乘积。

注意到现在做一遍FWT求的是一般的沃尔什变换结果,由于原多项式是 ( 1 + 2 x a i ) (1+2x^{a_i}) (1+2xai)的形式,则原多项式的沃尔什变换结果的点值不是 − 1 -1 1就是 3 3 3

那么考虑有多少个原多项式在这里的点值为 − 1 -1 1,设为 x x x,现在由于求了个和,显然 − x + 3 ⋅ ( n − x ) = f [ i ] -x+3\cdot(n-x)=f[i] x+3(nx)=f[i],解出 x x x后,我们需要点值乘积为 ( − 1 ) x ⋅ 3 n − x (-1)^x\cdot 3^{n-x} (1)x3nx,直接算出来带入后做IFWT就行了。


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define gc get_char
#define cs const

namespace IO{
	inline char get_char(){
		static cs int Rlen=1<<22|1;
		static char buf[Rlen],*p1,*p2;
		return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,Rlen,stdin),p1==p2)?EOF:*p1++;
	}
	
	template<typename T>
	inline T get(){
		char c;
		while(!isdigit(c=gc()));T num=c^48;
		while(isdigit(c=gc()))num=(num+(num<<2)<<1)+(c^48);
		return num;
	}
	inline int getint(){return get<int>();}
}
using namespace IO;

cs int mod=998244353,inv2=mod+1>>1,inv4=(ll)inv2*inv2%mod;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline int mul(int a,int b){static ll r;r=(ll)a*b;return r>=mod?r%mod:r;}
inline int power(int a,int b,int res=1){
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
	return res;
}

cs int SIZE=1<<20|1;
int n,mx;
int S,invS;
int a[SIZE],pw[SIZE];

inline void FWT(int *A){
	for(int re i=1;i<S;i<<=1)
	for(int re j=0;j<S;j+=i<<1)
	for(int re k=0;k<i;++k){
		int x=A[j|k],y=A[i|j|k];
		A[j|k]=add(x,y),A[i|j|k]=dec(x,y);
	}
}
inline void IFWT(int *A){
	FWT(A);for(int re i=0;i<S;++i)A[i]=mul(A[i],invS);
}

signed main(){
#ifdef zxyoi
	freopen("chocolate.in","r",stdin);
#endif
	n=getint();
	a[0]=n;pw[0]=1;
	for(int re i=1;i<=n;++i){
		int v=getint();mx=std::max(mx,v);
		a[v]+=2;pw[i]=mul(3,pw[i-1]);
	}
	S=1;while(S<=mx)S<<=1;
	invS=power(S,mod-2);FWT(a);
	for(int re i=0,nnn=mul(n,3);i<S;++i){
		int p=mul(inv4,dec(nnn,a[i]));
		a[i]=(p&1)?mod-pw[n-p]:pw[n-p];
	}
	IFWT(a);
	std::cout<<dec(a[0],1)<<"\n";
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值