1012: [JSOI2008]最大数maxnumber 单调栈+二分

1012: [JSOI2008]最大数maxnumber


Time Limit: 3 Sec  Memory Limit: 162 MB
Submit: 10305  Solved: 4509
[Submit][Status][Discuss]
Description


  现在请求你维护一个数列,要求提供以下两种操作:1、 查询操作。语法:Q L 功能:查询当前数列中末尾L
个数中的最大的数,并输出这个数的值。限制:L不超过当前数列的长度。2、 插入操作。语法:A n 功能:将n加
上t,其中t是最近一次查询操作的答案(如果还未执行过查询操作,则t=0),并将所得结果对一个固定的常数D取
模,将所得答案插入到数列的末尾。限制:n是非负整数并且在长整范围内。注意:初始时数列是空的,没有一个
数。


Input


  第一行两个整数,M和D,其中M表示操作的个数(M <= 200,000),D如上文中所述,满足D在longint内。接下来
M行,查询操作或者插入操作。


Output


  对于每一个询问操作,输出一行。该行只有一个数,即序列中最后L个数的最大数。


Sample Input


5 100


A 96


Q 1


A 97


Q 1


Q 2
Sample Output


96


93


96


利用单调栈存下可能的最大值,每次查询时就可以二分查找单调栈得出答案了。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int maxm = 200005;
#define ll long long
typedef struct
{
	ll xx;
	int id;
}H;
H p[maxm];
ll a[maxm], dp[maxm];
int main()
{
	int  i, j, k, m, len = 0, id = 0, sum = 0;
	char ch[2];ll n = 0, d, ans = 0, mx = 0, now, x;
	scanf("%d%lld", &m, &d);
	for (i = 1;i <= m;i++)
	{
		scanf("%s %lld", &ch, &x);
		if (ch[0] == 'A')
		{
			sum++;
			now = (ans + x) % d;
			while (p[len].xx <= now&&len > 0)
				len--;
			p[++len].xx = now;
			p[len].id = sum;
			continue;
		}
		int l = 1, r = len;
		if (l == r)
		{
			ans = p[len].xx;
			printf("%lld\n", ans);
			continue;
		}
		x = sum - x + 1;
		while (r - l > 1)
		{
			int mid = (r + l) / 2;
			if (p[mid].id >= x)
			{
				ans = p[mid].xx;
				r = mid;
			}
			else
				l = mid;
		}
		if (p[r].id >= x)
			ans = p[r].xx;
		if (p[l].id >= x)
			ans = p[l].xx;
		printf("%lld\n", ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值