seaborn系列 (15) | 双变量关系图jointplot()

双变量关系图

在默认情况下双变量关系图是散点图与直方图组合的联合直方图,可以通过设置kind来改变联合直方图。

函数原型

seaborn.jointplot(x, y, data=None, kind='scatter', 
                  stat_func=None, color=None, height=6,
                  ratio=5, space=0.2, dropna=True, 
                  xlim=None, ylim=None, joint_kws=None,
                  marginal_kws=None, annot_kws=None, **kwargs)

参数解读

在这里插入图片描述

x,y,hue:数据字段变量名(如上表,date,name,age,sex为数据字段变量名)
data: DataFrame

kind:{"scatter"| "reg"| "resid"| "kde"| "hex"}
作用:指定要绘制的类型

color : matplotlib color

height : 数字
作用:指定图的大小(图是正方形的)

ratio:数字
作用:指定主轴(x,y轴)与边缘轴(正方形四边除x,y轴外的其它轴)高度的比率

space:数字
作用:指定主轴与边缘轴之间的空间

dropna : bool
作用:如果为True,则删除x和y中缺少的观测值

案例教程

案例代码已上传:Github地址

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
#设置风格样式
sns.set(style="white", color_codes=True)
# np.random.seed(num),指定了num则表示生成的随机数是可预测的
np.random.seed(0)
# 构建数据
tips = sns.load_dataset("tips")
"""
案例1:
绘制散点图,边缘为直方图:联合直方图
"""
sns.jointplot(x="total_bill", y="tip", data=tips)
plt.show()

在这里插入图片描述

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
#设置风格样式
sns.set(style="white", color_codes=True)
# np.random.seed(num),指定了num则表示生成的随机数是可预测的
np.random.seed(0)
# 构建数据
tips = sns.load_dataset("tips")
"""
案例2:
在联合添加回归和核密度拟合
"""
sns.jointplot("total_bill", "tip", data=tips, kind="reg")
plt.show()

在这里插入图片描述

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
#设置风格样式
sns.set(style="white", color_codes=True)
# np.random.seed(num),指定了num则表示生成的随机数是可预测的
np.random.seed(0)
# 构建数据
tips = sns.load_dataset("tips")
"""
案例3:
使用六边形点代替联合直方图中的圆形散点
"""
sns.jointplot("total_bill", "tip", data=tips, kind="hex")
plt.show()

在这里插入图片描述

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
#设置风格样式
sns.set(style="white", color_codes=True)
# np.random.seed(num),指定了num则表示生成的随机数是可预测的
np.random.seed(0)
# 构建数据
iris = sns.load_dataset("iris")
"""
案例4:
将散点图和直方图均替换为核密度估计
"""
sns.jointplot("sepal_width", "petal_length", data=iris,
              kind="kde", space=0, color="g")
plt.show()

在这里插入图片描述

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
#设置风格样式
sns.set(style="white", color_codes=True)
# np.random.seed(num),指定了num则表示生成的随机数是可预测的
np.random.seed(0)
# 构建数据
iris = sns.load_dataset("iris")
"""
案例5:
绘制散点图,并添加联合密度估计
"""
g = (sns.jointplot("sepal_length", "sepal_width",
                   data=iris, color="k")
     .plot_joint(sns.kdeplot, zorder=0, n_levels=6))
plt.show()

在这里插入图片描述

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
#设置风格样式
sns.set(style="white", color_codes=True)
"""
案例6:
随机生成300个(x,y)二维数据,并指定x,y轴
"""
x, y = np.random.randn(2, 300)
(sns.jointplot(x, y, kind="hex").set_axis_labels("x", "y"))
plt.show()

在这里插入图片描述

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
#设置风格样式
sns.set(style="white", color_codes=True)
# np.random.seed(num),指定了num则表示生成的随机数是可预测的
np.random.seed(0)
# 构建数据
tips = sns.load_dataset("tips")
"""
案例7:
通过指定height来设置图的大小
"""
sns.jointplot("total_bill", "tip", data=tips,
              height=5, ratio=3, color="g")
plt.show()

在这里插入图片描述

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
#设置风格样式
sns.set(style="white", color_codes=True)
# np.random.seed(num),指定了num则表示生成的随机数是可预测的
np.random.seed(0)
# 构建数据
tips = sns.load_dataset("tips")
"""
案例8:
其他一些参数的设置效果
"""
sns.jointplot("petal_length", "sepal_length", data=iris,
              marginal_kws=dict(bins=15, rug=True),
              annot_kws=dict(stat="r"),
              s=40, edgecolor="w", linewidth=1)
plt.show()

在这里插入图片描述

案例地址

上述案例代码已上传:Github地址
Github地址https://github.com/Vambooo/SeabornCN

更多技术干货在公众号:数据分析与可视化学研社

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑机接口社区

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值