#数据集#:并发脑电图、心电图和多剂量经颅电刺激行为的数据集

本数据集结合高密度脑电图(EEG)与经颅电刺激(tES)期间的生理及行为指标,包含9种HD-tES类型,针对额叶、运动、顶叶区域,涵盖DC、5Hz、30Hz三种波形,共783次刺激试验。数据包括原始及下采样后的EEG、ECG、EOG数据,以及行为和问卷数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

43ef6f0c38a3c640f4bb6a78e84047f8.png

a834ad1efbf2a4b85824318a129b86d9.gif

研究人员结合人类参与者的高密度脑电图 (EEG) 与经颅电刺激 (tES) 期间的生理和连续行为指标,提出了一个数据集。数据包括九种高清 tES (HD-tES) 类型,针对三个皮层区域(额叶、运动、顶叶),具有三种刺激波形(DC、5 Hz、30 Hz);超过 783 次总刺激试验,超过 62 个会话,包括 EEG、生理(ECG、EOG)和连续行为警觉性/警觉性指标。实验 1 和 2 包括参与者分别在三个 70 分钟和两个 70.5 分钟的会话中执行持续的警惕/警觉任务。在每次会话前后,研究者收集了人口统计学数据以及自我报告的健康问卷。参与者在实验 1 中接受了所有 9 种刺激类型,每个会话包括三种刺激类型,每种类型有 4 次试验。参与者在实验 2 中接受了两种刺激类型,每个会话对给定刺激类型进行 20 次试验。通过重复选择会话来测试参与者内部的可靠性。这个独特的数据集支持一系列假设检验,包括 tDCS/tACS 位置和频率、大脑状态、生理、疲劳和认知表现的相互作用。

fa4999005227eec51b17891bf3b2f88f.png

数据集描述:

f13a0860706d6b240b1b88fe17228320.png

数据集概括图

数据集概括图:将高密度脑电图 (EEG) 与经颅电刺激 (tES;包括 tDCS 和 tACS) 期间的生理和连续行为指标相结合的数据集。数据包括九种高清晰度 tES (HD-tES) 类型,针对三个大脑区域(额叶、运动、顶叶),具有三种波形(DC、5Hz、30Hz),在 62 个会话中进行了超过 783 次总刺激试验 EEG、生理(ECG 或 EKG、EOG)和持续的行为警觉/警觉性指标。

实验1:示例参与者数据

a9c6e47b317421dc6beeb9528a61c2f6.png

84d09078f44d5fc8eb6c2c17f44ea399.png

实验概述:(a)行为任务。(b) 2D 中的 EEG 和刺激布局。(c) 带有刺激蒙太奇的 MRI 衍生 3D 头部模型。(d) 任务设置。(e) 实验 1 编程块设计和 (f) 触发细节。

数据格式:

  • Raw EEG, ECG, EOG data in .cnt formant

  • Raw EEG, ECG, EOG data formated to comply with BIDS standard where data are in .set format (EEGlab)

  • Raw downsampled EEG, ECG, EOG data (1k Hz) in .mat format for Experiment 1 and Experiment 2 (works with MATLAB and Python)

  • Raw behavioral CTT data .csv format

  • Questionnaire data in .xlsx format

文件目录:

+GX
|--Analysis
    |--GX_Exp1_CTT_GeneralAnalysis.m
    |--GX_Exp2_CTT_GeneralAnalysis.m
    ...
|--Data
    +--0101 (Participant number: 01 and session number: 01)
        +--0101
            |--ptracker-0101.csv (Behavioral Data)
            |-- ptracker-summary-0101..txt
        |--GX_01_2019-09-24_15-45-53.cnt  (EEG, ECG, EOG data)
        |--GX_01_2019-09-24_15-45-53.evt
        |--MATLABfilestream0101924.mat
        |--MATLABfilestream0101924.txt
    +--0102 (Participant number: 01 and session number: 02)
    +--0103 (Participant number: 01 and session number: 03)
    +--0104 (Participant number: 01 and session number: 04)
    ... 
|--Documents
|--Results

绘制为时间序列、频谱图和行为 CTT 的试验,类似于下面。可通过如下链接找到。

https://figshare.com/articles/figure/Dataset_of_Concurrent_EEG_ECG_and_Behavior_with_Multiple_Doses_of_transcranial_Electrical_Stimulation-_Stimulation_Trials_Timeseries/14810442

b0ddcbe84ea51520d22d5797350a69b6.png

下采样:

由于原始数据以 2 kHz 采样,因此在某些机器上移动和加载文件可能会变得困难。如果想对数据进行下采样,请使用 GX_DataDownSample.m 脚本。该脚本具有一个 GUI,允许您根据要对数据进行下采样的程度粘贴文件名、位置和下采样因子。该脚本假定文件结构如上所示。

6c61e2d697ceb6afba2aa0f9325b07f7.png

数据存放地址:

https://figshare.com/authors/Nigel_Gebodh/8797454

https://github.com/ngebodh/GX_tES_EEG_Physio_Behavior

论文参考

Gebodh, N., Esmaeilpour, Z., Datta, A. et al. Dataset of concurrent EEG, ECG, and behavior with multiple doses of transcranial electrical stimulation. Sci Data 8, 274 (2021). 

https://doi.org/10.1038/s41597-021-01046-y


仅用于学术交流,不用于商业行为,若有侵权及疑问,请后台留言,管理员即时删侵!

5a2a6051272cc21f5f6033183550a7b6.png

更多阅读


乐高小车竟被装上「生物大脑」,无需算法走出蜂巢迷宫!

Python协方差矩阵处理脑电数据

当你在梦乡里,大脑是如何唤醒你的?

中日两高校合作发表仿生手臂驱动技术研究综述

新的脑图可以预测行为

脑电与情绪简介

科学家发现,我们的大脑为音乐进化了一个专门的神经回路

新型脑刺激疗法治疗重度抑郁症

“万能钥匙”可以打开大脑:脑刺激个性化医疗的新领域

基于深度学习的脑电图识别 综述(一)总体概述

EEGNet: 神经网络应用于脑电信号


ff1ebe62b96bbb058d0397659d9cbddc.png

4242c0daae2e946a371af76591ecdbe5.png

点个在看祝你开心一整天!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑机接口社区

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值