脑卒中后每4名幸存者中就有3人面临终身瘫痪风险,其中下肢运动功能丧失直接导致患者丧失独立生活能力。传统康复训练存在"神经激活不足-动作执行低效"的恶性循环,亟待突破性解决方案。然而,开发可靠的BCI-MI系统,并借此揭示卒中恢复过程中神经可塑性的机制,需依赖大规模数据集的支持。此类数据集需满足两大需求:一是精准捕捉脑卒中患者下肢MI的脑电特征,二是包含反映康复进程的纵向数据。
天津大学的研究团队通过采集27例脑卒中患者的脑电数据填补了这一空白。数据涵盖两种强化实验范式及三个不同时间节点,包含原始脑电信号、预处理数据及患者临床信息。基于CSP-SVM的初步分析显示,平均分类准确率达80.50%。该数据集将推动脑卒中患者脑神经可塑性的机制研究,助力下肢MI解码算法的开发,并为构建系统的脑卒中康复体系提供数据支撑。
01
方法
本研究招募27例恢复期脑卒中患者(男23例,女4例,平均年龄51.44岁),纳入标准包括经CT/MRI确诊、病程1-12个月、认知功能正常等,排除严重并发症及心脏疾病患者。研究经天津环湖医院伦理委员会批准,所有患者签署知情同意书,数据匿名化处理。
数据集涵盖五项实验:文本提示传统范式(Pre)、恒定电刺激范式(IES)、步态相位编码电刺激范式(SES)及治疗后(Post)、随访(Follow)纵向对照。
图1 实验设备与场景示意图。(a) 实验环境全景图;(b) 刺激电极定位示意图
实验分为步态MI与静息任务,采用静态视觉提示避免SSVEP干扰,其中IES/SES范式通过时序电刺激(如SES的腓肠/腓浅神经分阶段刺激)增强患者注意力。每项实验含80次随机任务(40次MI+40次静息),单次试验历时12秒,分准备期、提示期、任务期与放松期。
图2. 实验范式
使用64导联NeuSenW脑电仪(采样率1000 Hz)采集数据,经降采样(250 Hz)、带通滤波(3-35 Hz)、平均参考及ICA去噪(去除眼动/肌电伪迹)后,提取目标标签时段数据。预处理流程包括手动剔除运动伪迹、基于ICLabel的独立成分分析及数据分段,确保MI特征(8-25 Hz)与噪声分离。患者详细信息及实验记录见表1-2。
02
数据记录
该数据集已通过Figshare公开发布,严格遵循脑成像数据结构标准(Brain Imaging Data Structure, BIDS)。其层级架构如图3所示,主要包含四大模块:
预处理数据:以 .set 格式存储分段处理后的脑电信号;
原始数据:完整记录每例受试者全实验流程的未处理脑电信号(.set 格式);
附加信息:涵盖患者临床档案、64导联电极坐标(基于国际10-20系统)及脑电事件标记;
代码库:提供数据预处理、特征提取与可视化的MATLAB脚本。
图3. 数据集结构
03
性能验证
本研究通过事件相关谱扰动(ERSP)分析与CSP-SVM分类双重验证数据集可靠性:在时频维度,MI任务显著诱发α/β频段事件相关去同步化(ERD),中央区(Cz电极群)能量抑制现象与静息态形成鲜明对比,如图4-5所示。
图4. 范式实验组与纵向实验组ERD平均地形图。足部运动相关特征区以虚线框标注。
图5. 范式实验组与纵向实验组在中央顶区Cz电极及其周边电极的平均时频图。任务提示标记为黑色实线,MI任务起始时刻由红色虚线标示。
图6. 所有患者在Pre(基线)、IES(强化范式1)、SES(强化范式2)、Post(干预后)及Follow(随访)实验中的解码准确率,各组均值以蓝色虚线标注。
在解码性能上,如图6所示,基于两种强化范式(IES/SES)与纵向数据的分类准确率均达80%以上,与健康人群及卒中患者同类研究水平相当,其中SES范式以82.41%精度展现最优性能。该验证不仅证实了数据集的神经生理学合理性,更为解析下肢康复的神经可塑性机制、开发高鲁棒性BCI系统提供了关键方法论支撑,标志着卒中康复研究从单一时间点分析向多模态动态评估的跨越。
仅用于学术分享,若侵权请留言,即时删侵!
加入社群
欢迎加入脑机接口社区交流群,
探讨脑机接口领域话题,实时跟踪脑机接口前沿。
加微信群:
添加微信:RoseBCI【备注:姓名+行业/专业】。
加QQ群:913607986
欢迎来稿
1.欢迎来稿。投稿咨询,请联系微信:RoseBCI
点击投稿:脑机接口社区学术新闻投稿指南
2.加入社区成为兼职创作者,请联系微信:RoseBCI
一键三连「分享」、「点赞」和「在看」
不错过每一条脑机前沿进展