栏目介绍: “论文快讯”栏目旨在精简地分享一周内发表在高水平期刊上的Metasurface领域研究成果,帮助读者及时了解领域前沿动态,如果对专栏的写法或内容有什么建议欢迎留言,后续会陆续开启其他专栏,敬请期待。
-
论文基本信息:
标题:Frequency transfer and inverse design for metasurface under multi-physics coupling by Euler latent dynamic and data-analytical regularizations
作者:Enze Zhu(浙江大学信息与电子工程学院);
Zheng Zong(浙江大学信息与电子工程学院);
Erji Li(浙江大学信息与电子工程学院);
Yang Lu(浙江大学信息与电子工程学院);
Jingwei Zhang(浙江大学信息与电子工程学院);
Hao Xie(浙江大学信息与电子工程学院);
Ying Li(浙江大学信息与电子工程学院);
通讯作者 Wen-Yan Yin(浙江大学信息与电子工程学院);
通讯作者 Zhun Wei(浙江大学信息与电子工程学院) -
发表时间:2025年3月6日(2024年6月6日投稿,2025年2月25日接收)
发表期刊:Nature Communications(JCR-Q1,IF=14.7) -
论文快览:
-
论文快览:
解决的问题
随着电子器件小型化与高功率化发展,超表面在多物理场(如电磁-热)耦合下的性能建模与逆向设计面临双重瓶颈。传统数据驱动方法依赖完整频率数据训练模型,但高频段数据因计算或实验成本高昂难以获取,导致模型泛化能力受限;现有研究多聚焦单一物理场响应,缺乏对多场耦合效应(如温度变化引起的材料参数漂移)的系统建模,尤其在高频外推与多目标协同优化场景中,现有方法无法兼顾计算效率与物理一致性,形成显著的研究空白。提出的方法
本研究提出多物理场深度学习框架(MDLF),其核心整合多保真度深度算子网络、欧拉潜在动态网络及数据-解析混合反演网络。多保真度框架通过分层建模策略,利用单电磁仿真数据预训练基础网络,再通过残差学习融合多场耦合数据,降低对高成本多物理仿真的依赖;欧拉潜在动态网络构建隐变量空间动态方程,基于低频温度数据编码潜在状态演化规律,实现高频温度场外推;逆向设计中引入解析正则化与多场前向模型耦合约束,将谐振频率等物理先验嵌入数据驱动优化,解决非唯一性问题。实现的效果
电磁响应预测相对误差为0.036,较单保真模型降低76.6%;高频温度外推误差为0.043,较传统DNN降低73.8%。逆向设计通过混合正则化将谐振频率误差降至0.0539,实验验证优化结构在8 GHz辐射下的峰值温度从347 K降至332 K。该框架在自由曲面与多层超原子等复杂结构上均实现误差小于0.05,且多保真策略减少90%高精度数据需求。创新点分析
本研究属于算法创新,核心突破在于跨域建模与物理约束融合。首次将潜在动态网络应用于频率域外推,通过隐变量演化方程解决多场数据稀缺下的外推难题;多保真分层策略显著提升数据效率,降低多物理耦合建模成本;逆向设计中解析模型与数据驱动的协同优化机制,突破传统黑箱设计的局限性,为多目标协同设计提供新范式。
-
论文重要图文:
摘要:频率迁移是机器学习领域的关键挑战,其使研究者能够突破频谱特性带内分析的局限,实现带外预测。传统方法中,为预测特定频率点特性,需将目标频段纳入深度神经网络(DNN)的训练数据集。然而受限于测量或计算资源,部分频率的训练数据难以获取,该问题在多物理场场景中尤为显著。本研究提出包含多保真度DeepONet、欧拉潜态动态网络和数据解析反演网络的多物理场深度学习框架(MDLF)。在未知多物理场响应的条件下,通过动态调用欧拉潜态空间与单物理场信息,MDLF成功实现了参数化与自由形态超表面在不可见频段的泛化预测。进一步引入融合混合先验知识的反演方法实现超表面逆向设计。通过电磁-热(EM-thermal)耦合场景下的数值仿真与实验验证了该框架的有效性。
图1 | MDLF流程示意图,包含正向方法与逆向方法。R表示需求,Input-T表示超表面温度信息,G为几何结构,G’为预测G,T为温度,f为频率,SE表示单电磁(EM)仿真S参数,SM表示多物理场仿真S参数,S0 E为预测SE,S0 M为预测SM,T0 p为逆向方法预测温度,aðfÞ表示潜态空间,fR为谐振频率,f0 R为预测fR,SR = SM - SE。
图2 | 网络架构示意图。a 多保真度DeepONet结构,其中Net1预测特定f下几何结构G的SE(单电磁仿真S参数),Net2预测SE与SM(多物理场仿真S参数)之间的残差。FC表示全连接层。LE与LR分别表示Net1和Net2的损失函数。b 逆向设计模型结构,其中LG、LS、LT和LR分别表示几何数据、电磁正向模型、热力学正向模型及解析模型产生的损失。c 基于频率流开发的潜态动态网络,Net3用于更新潜态空间aðfÞ,Net4用于预测平均温度TðfÞ。LT表示Net3与Net4的损失函数。
图3 | 所提框架的数值仿真结果。a 多物理耦合全波仿真电磁响应、低保真模型Net1预测结果及多保真模型(Net1 & Net2)预测结果对比。b 非训练集测试:全波仿真与多保真模型预测结果对比。c 潜态动态网络预测平均温度与全波仿真对比,箭头连接不同曲线与对应纵轴。左侧为频率迁移10.2-14 GHz的参数化超表面结构。中部为频率外推11.2-14 GHz的自由形态高维超原子结构。右侧为顶层与底层采用自由形态高维结构的三层超原子。d 传统DNN方法与所提潜态动态网络温度预测平方误差对比,其中10 GHz以上结果为频率迁移。e 全波仿真、所提方法及传统DNN方法预测平均温度对比。
图4 | 数据解析驱动网络的实验结果。a 不同正则化权重训练逆向模型的验证集相对误差,括号内数值从左至右对应w1-w4。E1表示几何确定相对误差。E21与E22分别表示第一、第二谐振频率相对误差。E3表示电磁响应相对误差。E4表示平均温度相对误差。b 图a局部放大图,突出解析模型与热力学正向模型误差。c,d 本工作中解析驱动正则化的效果展示。e 目标电磁响应与逆向设计结果对比,目标响应为离散点连接折线。f 仿真获取真实电磁响应曲线时的逆向设计实例。
图5 | 逆向方法实现的多物理功能验证。a 相同目标电磁响应下,无Input-T训练(方案1)与有Input-T训练(方案2)逆向模型的电磁性能对比。b 方案1与方案2热力学性能对比。c 辐照3分钟后的方案1与方案2红外图像。d 样品四分之一位置(Line1)与二分之一位置(Line2)实测温度。
图6 | 逆向设计结构的实验结果。a 低功率输入(SE)下S21测量结果与仿真对比。b 高功率输入下温升测量结果。c 3.65 GHz红外照片。d 波导内高功率辐照下电磁响应测量。e 对比样品在高功率辐照下的电磁与热力学性能。
参考文献:
- Zhu, E., Zong, Z., Li, E. et al. Frequency transfer and inverse design for metasurface under multi-physics coupling by Euler latent dynamic and data-analytical regularizations. Nat Commun 16, 2251 (2025).
DOI: https://doi.org/10.1038/s41467-025-57516-z
免责声明:
本公众号专注于超表面领域的最新研究动态、学术成果和技术应用分享。所有发布的内容和图片,均已标明来源,且仅供个人学术学习和知识积累使用,不得用于商业目的。如您发现任何版权或相关问题,欢迎通过邮箱 metasurface@126.com 联系我们,我们将尽快处理并协调相关事宜。