LeNet-5网络的参数及连接个数

原文:http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf

Gradient Based Learning Applied to Document Recognition

lenet5

第7页倒数第3段。

QQ截图20160328014801

首先看C1和input的卷积连接,C1中各个field的每个神经元连接了25个输入单元,这里有25个连接,一个feature map有28*28个神经元,就有28*28*25个连接,一共有6个C1 feature maps,这样有28*28*25*6=117600个卷积连接。

接下来还要加上bias,bias单元是加在输入层中的,所有C1神经元的计算都要加上这个bias,即都与这个bias单元连接,就是28*28*6=4704,加上117600=122304。

每个s2层的单元对应着两个参数,因为是sampling,所以s2层的单个feature map共用这两个参数,就有6*2=12个参数了。不过现在的pooling层是没有参数的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值