最小二乘法概念及scikit-learn实操

本文介绍了最小二乘法的基本概念,它用于寻找最佳线性拟合,最小化数据点到直线的均方误差。通过scikit-learn库,展示了如何在Python中进行最小二乘法的线性回归实操,计算得到模型的系数和截距。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本概念

给定数据集D=\{ (\textbf{x}_{1},y_{1}),\textbf{x}_{2},y_{2}),\dots,(\textbf{x}_{n},y_{n})\} ,其中\textbf{x}_{i}=(x_{i1},x_{i2},\dots,x_{id}),y_{i}\in\mathbb{R},线性回归试图学得一个线性模型尽可能准确预测输出值。即f(\textbf{x}_{i})=\textbf{w} ^ \mathrm{ T }\textbf{x}_{i}+b,使得

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值