机器学习——线性回归实践

主要内容:

  • 线性回归方程实现
  • 梯度下降效果
  • 对比不同梯度下降策略
  • 建模曲线分析
  • 过拟合与欠拟合
  • 正则化的作用
  • 提前停止策略

 1.实验目标分析

import numpy as np
import os
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
import warnings
# 过滤警告
warnings.filterwarnings('ignore')
np.random.seed(42)

回归方程:

当做是一个巧合就可以了,机器学习中核心的思想是迭代更新

import numpy as np
X = 2*np.random.rand(100,1)
y = 4+ 3*X +np.random.randn(100,1)
# np.random.randn(100,1)随机抖动
plt.plot(X,y,'r.')
plt.xlabel('X_1')
plt.ylabel('y')
plt.axis([0,2,0,15])
plt.show()  

              

 2.参数求解方法

X_b = np.c_[np.ones((100,1)),X]
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
# (x(T)x)(-1)x(T)y  .linalg.inv相当于-1 
theta_best
array([[4.21509616],
       [2.77011339]])
X_new = np.array([[0],[2]])
# [0]-> 起始位置 [2]-> 终止位置
X_new_b = np.c_[np.ones((2,1)),X_new]#测试数据  
y_predict = X_new_b.dot(theta_best)# theta_best权重值
y_predict 
# theta0 和 theta1
array([[4.21509616],
       [9.75532293]])
plt.plot(X_new,y_predict,'r--')
plt.plot(X,y,'b.')
plt.axis([0,2,0,15])
plt.show()

         

sklearn api文档:

 API Reference — scikit-learn 1.0.2 documentation

# https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X,y)
print (lin_reg.coef_)#lin_reg.coef_权重参数
print (lin_reg.intercept_)#lin_reg.intercept_偏置参数
[[2.77011339]]
[4.21509616]

3.预处理对结果的影响 

梯度下降

核心解决方案,不光在线性回归中能用上,还有其他算法中能用上,比如神经网络

 问题:步长太小

问题:步长太大

 

 

学习率应当尽可能小,随着迭代的进行应当越来越小。

标准化的作用:

  • 拿到数据之后基本上都需要做一次标准化操作

 批量梯度下降计算公式

4.梯度下降 

批量梯度下降

eta = 0.1# 学习率
n_iterations = 1000# 迭代次数
m = 100# 样本个数
theta = np.random.randn(2,1)#随机初始化
for iteration in range(n_iterations):
    gradients = 2/m* X_b.T.dot(X_b.dot(theta)-y) #(2/m)X(T)(X*theta-y)
    theta = theta - eta*gradients# theta = theta - theta*学习率
theta
array([[4.21509616],
       [2.77011339]])
X_new_b.dot(theta)
array([[4.21509616],
       [9.75532293]])

 5.学习率对结果的影响

theta_path_bgd = []
def plot_gradient_descent(theta,eta,theta_path = None):
    m = len(X_b)
    plt.plot(X,y,'b.')
    n_iterations = 1000
    for iteration in range(n_iterations):
        y_predict = X_new_b.dot(theta)#预测结果
        plt.plot(X_new,y_predict,'b-')
        gradients = 2/m* X_b.T.dot(X_b.dot(theta)-y)
        theta = theta - eta*gradients#theta值更新    
        if theta_path is not None:
            theta_path.append(theta)
    plt.xlabel('X_1')
    plt.axis([0,2,0,15])
    plt.title('eta = {}'.format(eta))
theta = np.random.randn(2,1)

plt.figure(figsize=(10,4))
plt.subplot(131)
plot_gradient_descent(theta,eta = 0.02)
plt.subplot(132)
plot_gradient_descent(theta,eta = 0.1,theta_path=theta_path_bgd)
plt.subplot(133)
plot_gradient_descent(theta,eta = 0.5)
plt.show()

6.随机梯度下降得到的结果

theta_path_sgd=[]
m = len(X_b)
np.random.seed(42)
n_epochs = 50

t0 = 5
t1 = 50

def learning_schedule(t):
    return t0/(t1+t)

theta = np.random.randn(2,1)#theta的初始化    

for epoch in range(n_epochs):
    for i in range(m):
        if epoch < 10 and i<10:
            y_predict = X_new_b.dot(theta)
            plt.plot(X_new,y_predict,'r-')
        random_index = np.random.randint(m)
        xi = X_b[random_index:random_index+1]#取当前数据
        yi = y[random_index:random_index+1]
        gradients = 2* xi.T.dot(xi.dot(theta)-yi)#梯度值的计算
        eta = learning_schedule(epoch*m+i)# 学习率的衰减
        theta = theta-eta*gradients#theta值更新
        theta_path_sgd.append(theta)
        
plt.plot(X,y,'b.')
plt.axis([0,2,0,15])  
plt.show()

                   

 7.MiniBatch方法

theta_path_mgd=[]
n_epochs = 50#迭代次数
minibatch = 16#
theta = np.random.randn(2,1)#初始化theta
t0, t1 = 200, 1000
def learning_schedule(t):
    return t0 / (t + t1)
np.random.seed(42)
t = 0
for epoch in range(n_epochs):
    shuffled_indices = np.random.permutation(m)#对数据进行洗牌
    X_b_shuffled = X_b[shuffled_indices]#及那个新的索引回传到X_b
    y_shuffled = y[shuffled_indices]
    for i in range(0,m,minibatch):
        t+=1
        xi = X_b_shuffled[i:i+minibatch]
        yi = y_shuffled[i:i+minibatch]
        gradients = 2/minibatch* xi.T.dot(xi.dot(theta)-yi)
        eta = learning_schedule(t)#学习率的衰减  t表示当前的计数器
        theta = theta-eta*gradients#theta值更新
        theta_path_mgd.append(theta)
theta
array([[4.25490685],
       [2.80388784]])

8.不同策略效果对比 

theta_path_bgd = np.array(theta_path_bgd)
theta_path_sgd = np.array(theta_path_sgd)
theta_path_mgd = np.array(theta_path_mgd)
plt.figure(figsize=(12,6))
plt.plot(theta_path_sgd[:,0],theta_path_sgd[:,1],'r-s',linewidth=1,label='SGD')#theta_path_sgd[:,0]->theta0 theta_path_sgd[:,0] -> theta1 
plt.plot(theta_path_mgd[:,0],theta_path_mgd[:,1],'g-+',linewidth=2,label='MINIGD')
plt.plot(theta_path_bgd[:,0],theta_path_bgd[:,1],'b-o',linewidth=3,label='BGD')
plt.legend(loc='upper left')
plt.axis([3.5,4.5,2.0,4.0])
plt.show()

 实际当中用minibatch比较多,一般情况下选择batch数量应当越大越好。

9.多项式回归

m = 100
X = 6*np.random.rand(m,1) - 3
y = 0.5*X**2+X+np.random.randn(m,1)#.randn-> 高斯抖动
plt.plot(X,y,'b.')
plt.xlabel('X_1')
plt.ylabel('y')
plt.axis([-3,3,-5,10])
plt.show()

   

from sklearn.preprocessing import PolynomialFeatures
poly_features = PolynomialFeatures(degree = 2,include_bias = False)
X_poly = poly_features.fit_transform(X)# fit表示实际进行多项式转换 transform实际执行完后将结果整合在一块
X[0]
array([2.38942838])
X_poly[0]#x = 2.38942838 x^2 =  5.709368 
array([2.38942838, 5.709368  ])
2.82919615 ** 2
8.004350855174822
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X_poly,y)
print (lin_reg.coef_)
print (lin_reg.intercept_)
# 回归方程为:y=1.63887939x + 0.5810637 * (x ** 2)+4.56140272
[[0.95038538 0.52577032]]
[-0.0264767]
X_new = np.linspace(-3,3,100).reshape(100,1)
X_new_poly = poly_features.transform(X_new)
y_new = lin_reg.predict(X_new_poly)
plt.plot(X,y,'b.')
plt.plot(X_new,y_new,'r--',label='prediction')
plt.axis([-3,3,-5,10])
plt.legend()
plt.show()

        

10.模型复杂度 

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler#d导入标准化模块
plt.figure(figsize=(12,6))
for style,width,degree in (('g-',1,100),('m--',1,2),('r-+',1,1)):
    poly_features = PolynomialFeatures(degree = degree,include_bias = False)
    std = StandardScaler()
    lin_reg = LinearRegression()
    polynomial_reg = Pipeline([('poly_features',poly_features),
             ('StandardScaler',std), # 标准化操作
             ('lin_reg',lin_reg)]) #回归操作
    polynomial_reg.fit(X,y)
    y_new_2 = polynomial_reg.predict(X_new)
    plt.plot(X_new,y_new_2,style,label = 'degree   '+str(degree),linewidth = width)
plt.plot(X,y,'b.')
plt.axis([-3,3,-5,10])
plt.legend()
plt.show()

 特征变换的越复杂,得到的结果过拟合风险越高,不建议做的特别复杂。

11.样本数量对结果的影响 

数据样本数量对结果的影响

sklearn.metrics.mean_squared_error — scikit-learn 1.0.2 documentation

from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split

def plot_learning_curves(model,X,y):
    X_train, X_val, y_train, y_val = train_test_split(X,y,test_size = 0.2,random_state=100)
    train_errors,val_errors = [],[]
    for m in range(1,len(X_train)):
        model.fit(X_train[:m],y_train[:m]) 
        y_train_predict = model.predict(X_train[:m])#训练集的结果
        y_val_predict = model.predict(X_val)#验证集的结果
        train_errors.append(mean_squared_error(y_train[:m],y_train_predict[:m]))
        val_errors.append(mean_squared_error(y_val,y_val_predict))
    plt.plot(np.sqrt(train_errors),'r-+',linewidth = 2,label = 'train_error')#均方误差。
    plt.plot(np.sqrt(val_errors),'b-',linewidth = 3,label = 'val_error')
    plt.xlabel('Training set size')
    plt.ylabel('RMSE')
    plt.legend()
lin_reg = LinearRegression()
plot_learning_curves(lin_reg,X,y)
plt.axis([0,80,0,5])
plt.show()

                 

数据量越少,训练集的效果会越好,但是实际测试效果很一般。实际做模型的时候需要参考测试集和验证集的效果。

多项式回归的过拟合风险

polynomial_reg = Pipeline([('poly_features',PolynomialFeatures(degree = 25,include_bias = False)),
             ('lin_reg',LinearRegression())])#流水线
plot_learning_curves(polynomial_reg,X,y)
plt.axis([0,80,0,5])
plt.show()

                 

 越复杂越过拟合

12.正则化的作用 

对权重参数进行惩罚,让权重参数尽可能平滑一些,有两种不同的方法来进行正则化惩罚:

from sklearn.linear_model import Ridge
np.random.seed(42)
m = 20
X = 3*np.random.rand(m,1)
y = 0.5 * X + np.random.randn(m,1)/1.5 +1
X_new = np.linspace(0,3,100).reshape(100,1)

def plot_model(model_calss,polynomial,alphas,**model_kargs):
    for alpha,style in zip(alphas,('b-','g--','r:')):
        model = model_calss(alpha,**model_kargs)
        if polynomial:
            model = Pipeline([('poly_features',PolynomialFeatures(degree =10,include_bias = False)),
             ('StandardScaler',StandardScaler()),
             ('lin_reg',model)])
        model.fit(X,y)
        y_new_regul = model.predict(X_new)
        lw = 2 if alpha > 0 else 1
        plt.plot(X_new,y_new_regul,style,linewidth = lw,label = 'alpha = {}'.format(alpha))
    plt.plot(X,y,'b.',linewidth =3)
    plt.legend()

plt.figure(figsize=(14,6))
plt.subplot(121)
plot_model(Ridge,polynomial=False,alphas = (0,10,100))
plt.subplot(122)
plot_model(Ridge,polynomial=True,alphas = (0,10**-5,1))
plt.show()

 惩罚力度越大,alpha值越大的时候,得到的决策方程越平稳。

13.岭回归与lasso 

#https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
from sklearn.linear_model import Lasso

plt.figure(figsize=(14,6))
plt.subplot(121)
plot_model(Lasso,polynomial=False,alphas = (0,0.1,1))
plt.subplot(122)
plot_model(Lasso,polynomial=True,alphas = (0,10**-1,1))
plt.show()

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙有肥鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值