Dilated Residual Network论文解读

Introduction这篇文章来自于17年CVPR,同样是对空洞卷积的思考,但这篇文章不是把空洞卷积变着法得用在语义分割上,而是重新回到了图像分类领域,在看这篇文章的同时可以结合旷视和清华一起提出的另一篇论文DetNet一起阅读,这两篇论文都是利用了空洞卷积作为Backbone,把它的应用从分割扩展到了分类与检测。 DetNet: A Backbone network for Obj...
摘要由CSDN通过智能技术生成

Introduction

这篇文章来自于17年CVPR,同样是对空洞卷积的思考,但这篇文章不是把空洞卷积变着法得用在语义分割上,而是重新回到了图像分类领域,在看这篇文章的同时可以结合旷视和清华一起提出的另一篇论文DetNet一起阅读,这两篇论文都是利用了空洞卷积作为Backbone,把它的应用从分割扩展到了分类与检测。

DetNet: A Backbone network for Object Detection

但相对而言,DetNet这篇文章的内容丰富程度和DRN还是有一定的距离。
本片论文回到了图像分类的任务上,认为传统的CNN把输入图像不停的下采样到非常小的特征图会使场景的空间结构不那么清晰,不仅限制了分类的准确率,也影响到了把模型迁移到其他任务上的性能。因此文章提出使用空洞卷积作为分类网络的卷积,并通过实验证明了空洞残差网络的性能比普通残差网络的性能超出很多。同时文章也提出了类似Understanding Convolution for Semantic Segmentation中提出的 gridding g r i d d i n g 现象,并且提出了一种不同的方式去解决这个问题。

其实所有空洞卷积的出发点都是一样的:在不降低特征图分辨率与计算开销的情况下尽可能增加卷积核的感受野。在图像分类中,一般会使用5个池化或者步进2的卷积来进行下采样得到非常小的高维特征图,尽管这种方式被证明非常有用,但实际的分类中,很可能会有这种情况出现:一张图片中有各种尺度的物体,他们之间的相对关系对理解整个图片非常重要,比如桌子加椅子就是餐厅,桌子加沙发就可能是客厅;或者说背景是一座山,但前景存在一个不大却很重要的物体,那么这个物体的激活值在下采样的时候很可能会被背景的山产生的激活值所覆盖掉。一旦丢失了细节信息,几乎不可能通过上采样与训练再把它们恢复出来。

Dilated Residual Networks

DRN的结构与He大神的ResNet非常相似,最大的不同在于conv_stage 4/5 这两部分。这里我们使用 li G i l 代表第 l l 个conv_stage的第 i i

  • 6
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值