深度学习
zymofffice
这个作者很懒,什么都没留下…
展开
-
Minist
Mnist数据集下载、转换为lmdb,训练、测试、生成mean文件、生成label.txt、单张图片分类测试、可视化网络、可视化loss和accurate【1、下载数据】 sudo ./data/mnist/get_mnist.sh 【2、转lmdb格式】 sudo ./examples/mnist/create_mnist.sh【3、训练】 sudo ./examples/mni原创 2018-10-17 11:34:33 · 798 阅读 · 0 评论 -
区块链技术
起源于比特币的区块链技术,其实就是去中心化(中介),信息共享,隐蔽,更安全,节省成本。原创 2018-03-09 15:12:21 · 213 阅读 · 0 评论 -
深度学习环境搭建(ubuntu16.04+cuda8.0+cudnn6.0)
1、按照下面链接安装到Tensorflow处停止: http://118.89.51.133/?p=41 (其中:cuda的下载有两个文件,官网的不太对,可以去其他地方搜索,有一个是补丁文件) 2、按照此网站安装opencv,caffe: http://m.blog.csdn.net/autocyz/article/details/52299889 3、按照下面网站测试c原创 2017-12-18 17:44:36 · 452 阅读 · 0 评论 -
自己写程序调用caffe库(classify例子)
1、下载数据 http://blog.csdn.net/maweifei/article/details/728113162、修改classify文件,并编译 http://blog.csdn.net/jiongnima/article/details/701994803、可能会遇到以下错误,用sudo就可以 Check failed: error == cudaSuccess (30原创 2017-12-18 17:25:26 · 606 阅读 · 0 评论 -
makernet、yolo、ssd安装与训练教程(少走弯路)
1、首先根据官网的网址去安装markernet: https://pjreddie.com/darknet/yolo/2、根据下面博客内容去下载weights: http://blog.csdn.net/Quincuntial/article/details/766150033、下面博客给出检测人的数据及模型等 http://blog.csdn.net/samy原创 2017-12-17 14:44:45 · 396 阅读 · 0 评论 -
ubutu系统中gcc生成.so且调用
1、新建一个工程test1,并新建tets1.h文件,写入#include "stdio.h"void a();void b();2、新建a.c,b.c文件,并写入#include "test1.h"void a(){printf("a is running");}#include "test1.h"void b(){printf("b is running");}3、编译成动态原创 2017-12-12 21:48:26 · 200 阅读 · 0 评论 -
Mnist数据集下载、转换为lmdb,训练、测试、生成mean文件、生成label.txt、单张图片分类测试、可视化网络、可视化loss和accurate
Mnist数据集下载、转换为lmdb,训练、测试、生成mean文件、生成label.txt、单张图片分类测试、可视化网络、可视化loss和accurate【1、下载数据】 sudo ./data/mnist/get_mnist.sh 【2、转lmdb格式】 sudo ./examples/mnist/create_mnist.sh【3、训练】 sudo ./examples/mnist/train_原创 2017-12-12 15:43:48 · 651 阅读 · 0 评论 -
caffe移植到mxnet
caffe移植到mxnet http://blog.csdn.net/hjimce/article/details/70229090转载 2017-12-12 16:14:47 · 391 阅读 · 0 评论 -
[配置SSD进行目标检测]
配置SSD进行目标检测转载 2017-12-12 15:04:34 · 757 阅读 · 0 评论 -
python学习过程
python学习过程:1、【廖雪峰的python官方网站】https://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/其中:learning.py使用方法:将learning.py内容复制在一个txt文档中,重新命名为:learning.py,然后在learning.py目录下运行 pytho原创 2017-12-08 14:26:09 · 963 阅读 · 0 评论 -
嵌入式移植
深度学习嵌入式移植: 1、移植原因:算法必须在优化后的硬件上运行,因为学习成千上万的数据可能需要长达几周的时间。移动端其实不需要做tranning,只需要进行propagating,所以问题集中在移动端能不能存放并运行更大的network。 2、常见的移动端开发设备: NVIDIAJetsonTx1(Tx2)caffe移植https://github.com/jetsonhacks/i原创 2018-10-17 11:35:39 · 1120 阅读 · 0 评论