这是一道数据结构练习题,答案是14颗。
包含节点{1,2,3,4}的不同二叉搜索树有多少棵?
由此问题,我们可以拓展开来:
n个互不相同的节点,可以构成多少种拓扑互异的二叉搜索树(Binary Search Tree)?
首先,考虑以下事实:
- 包含一个节点的二叉搜索树,显然只有一种情况;
- 包含两个节点的二叉搜索树,可分别以左节点或右节点为根,剩下的右子树或是左子树只有一种情况;
- 包含3个节点的二叉搜索树,当选择最左边,或者是最右边的节点为根时,只需计算“剩下的两个节点所能构成的子树的种类”即可。当选择中间节点时,根据乘法原理,我们要先分别计算左子树的所有情况和右子树的所有情况,并把它们相乘,就得到了中间节点的所有情况。
包含多个节点的二叉搜索树,也可仿照三个节点的情况,选择一个节点为根,剩下的部分递归的进行组合;
这里,我们不妨以四个节点的情况为例,计算f(4)的值:
已知- f(1) = 1;
- f(2) = f(1) + f(1);
- f(3) = f(2) + f(1)*f(1) + f(2);
- … …
由此,我们可以得到递推式:
f(n) = f(n-1) + f(n-2)*f(1) + … + f(1)*f(n-2) + f(n-1);
好了,现在代入节点数4,看看是不是等于14?
f(4) = f(3) + f(2)*f(1) + f(1)*f(2) + f(3) = 14
感兴趣的朋友们可以搜索“Catalan数”,了解更多知识。