概率论基础 - 5 - 马尔可夫不等式

马尔可夫不等式把概率关联到数学期望,给出了随机变量的累积分布函数一个宽泛但仍有用的界。

定义

马尔可夫不等式用于估计尾事件的概率上界。

  • 若随机变量 X X X只取非负值,则 ∀ a > 0 \forall a>0 a>0有:

P ( X ≥ a ) ≤ E ( X ) a \mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a} P(Xa)aE(X)

证明

思路1

放大概率,得到部分函数期望

截断函数期望,二者相比较

  • 考虑 X ≥ a X\ge a Xa的情况 → X a ≥ 1 \frac {X}{a} \ge 1 aX1
  • 对于不等式左边有:

P ( X ≥ a ) = ∫ a + ∞ f ( x ) d x ≤ ∫ a + ∞ X a f ( x ) d x \mathbb P(X \geq a)=\int_{a}^{+\infty} f(x) d x \leq \int_{a}^{+\infty} \frac{X}{a} f(x) d x P(Xa)=a+f(x)dxa+aXf(x)dx

  • 对于不等式右边有:

E ( X a ) = ∫ − ∞ a X a f ( x ) d x + ∫ a + ∞ X a f ( x ) d x E\left(\frac{X}{a}\right)=\int_{-\infty}^{a} \frac{X}{a} f(x) d x+\int_{a}^{+\infty} \frac{X}{a} f(x) d x E(aX)=aaXf(x)dx+a+aXf(x)dx

  • 由于:

∫ − ∞ a X a f ( x ) d x ≥ 0 \int_{-\infty}^{a} \frac{X}{a} f(x) d x \geq 0 aaXf(x)dx0

  • 因此:

P ( X ≥ a ) ≤ ∫ a + ∞ X a f ( x ) d x ≤ E ( X a ) \mathbb P(X \geq a) \leq \int_{a}^{+\infty} \frac{X}{a} f(x) d x \leq E\left(\frac{X}{a}\right) P(Xa)a+aXf(x)dxE(aX)

  • 即:

P ( X ≥ a ) ≤ E ( X a ) = E ( X ) a \mathbb P(X \geq a) \leq E\left(\frac{X}{a}\right)=\frac{E(X)}{a} P(Xa)E(aX)=aE(X)

思路2

原始期望大于截断部分非负值的期望

求取期望时缩小 X X X得到 a a a

E ( X ) = ∫ − ∞ ∞ x f ( x ) d x ≥ ∫ a ∞ x f ( x ) d x ( a ≥ 0 ) ≥ ∫ a ∞ a f ( x ) d x = a ∫ a ∞ f ( x ) d x = a P ( X ≥ a ) \begin{aligned} \mathbb{E}(X) &=\int_{-\infty}^{\infty} x f(x) d x \\ & \geq \int_{a}^{\infty} x f(x) d x \quad(a \geq 0) \\ & \geq \int_{a}^{\infty} a f(x) d x \\ &=a \int_{a}^{\infty} f(x) d x \\ &=a \mathbb{P}(X \geq a) \end{aligned} E(X)=xf(x)dxaxf(x)dx(a0)aaf(x)dx=aaf(x)dx=aP(Xa)

图示

a a a越大于均值, X > a X>a X>a的概率越小

转自知乎-马同学

用途

  • 将概率与期望联系起来建立了不等式关系
  • 约束较松,可以用来粗略估计尾部事件

例如:

如果 X X X是工资,那么 E ( X ) E(X) E(X)就是平均工资,假设 a = n E ( X ) a=n E(X) a=nE(X),即平均工资的 n n n倍。那么根据马尔可夫不等式,不超过 1 / n 1/n 1/n的人会有超过平均工资的 n n n倍的工资。

参考资料

  • https://baike.baidu.com/item/%E9%A9%AC%E5%B0%94%E5%8F%AF%E5%A4%AB%E4%B8%8D%E7%AD%89%E5%BC%8F/7565874?fr=aladdin

  • https://www.zhihu.com/question/27821324

  • https://blog.csdn.net/ukakasu/article/details/82688413

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值