自十九周开始,我们便开始着手写项目(关于新闻资讯类的Web项目),当然,在这之中我们也学到了很多高效且有用的好技术,在接下来的内容中将去具体的描述这些好技术,介绍它们的具体用法和应用场景。本周向各位介绍的是Model类中的addAttribute()方法和RedirectAttributes中的addFlashAttribute()方法的区别,以及很多项目中常需用的限流操作的介绍。
addAttribute与addFlashAttribute区别
**1.作用范围**
model.addAttribute():在当前请求中有效,用于向视图传递数据。
redirectAttributes.addFlashAttribute():在重定向后的第一个请求中有效,之后自动清除。
**2.使用场景**
model.addAttribute():普通请求转发时使用
@GetMapping("/users")
public String users(Model model) {
model.addAttribute("users", userList); // 直接传递给视图
return "userList";
}
redirectAttributes.addFlashAttribute():重定向时传递临时数据
@PostMapping("/users/update")
public String update(User user, RedirectAttributes redirectAttributes) {
redirectAttributes.addFlashAttribute("message", "更新成功"); // 重定向后显示一次
return "redirect:/users";
}
**4.生命周期**
addAttribute:当前请求结束即失效。
flashAttribute:存活到下一个请求结束。
**5.数据存储方式**
model:数据存储在request作用域。
redirectAttributes:数据存储在session中,重定向后立即移除。
**6.典型使用场景区别**
使用model:直接渲染视图时传递数据。
使用redirectAttributes.addFlashAttribute():表单提交后重定向并显示一次性提示消息。
限流操作实现
**1.关于令牌桶算法(实现限流操作的重要方式)**
令牌桶算法(Token Bucket Algorithm):是一种常用的流量整形和限流算法,用于控制数据传输速率或请求处理速率,防止系统因流量过大而崩溃。
算法原理:
令牌桶算法的核心概念是有一个固定容量的令牌桶,系统会以固定的速率向桶中放入令牌。每个请求需要从令牌桶中获取一个或多个令牌才能被处理,如果桶中没有足够的令牌,请求将被阻塞或丢弃。具体步骤如下:
令牌生成:系统按照固定的速率(例如每秒生成 r 个令牌)向令牌桶中添加令牌。
令牌存储:令牌桶有一个最大容量 b,当桶中的令牌数量达到最大容量时,新生成的令牌将被丢弃。
请求处理:每个请求到来时,会检查令牌桶中是否有足够的令牌。如果有,请求将被处理,同时从桶中移除相应数量的令牌;如果没有,请求将被阻塞或拒绝。
应用场景:
网络流量控制:在网络设备(如路由器、防火墙)中,令牌桶算法可以用于限制网络流量,确保网络带宽的合理使用。
API 限流:对于提供 API 服务的系统,令牌桶算法可以限制每个用户或客户端的请求速率,防止恶意攻击或过度使用。
数据库访问控制:在数据库系统中,令牌桶算法可以用于控制并发访问,避免过多的请求对数据库造成压力。
2.介绍一个以外部Redis和Lua结合的限流操作
如下面的将Java代码与Redis、Lua技术结合实现的限流操作
import redis.clients.jedis.Jedis;
import java.util.Collections;
public class TokenBucketRateLimiter {
private static final String TOKEN_BUCKET_KEY = "rate_limit_bucket";
private static final String LUA_SCRIPT =
"local current_tokens = tonumber(redis.call('hget', KEYS[1], 'tokens'))\n" +
"local last_update = tonumber(redis.call('hget', KEYS[1], 'last_update'))\n" +
"if current_tokens == nil then\n" +
" current_tokens = tonumber(ARGV[1])\n" +
" last_update = tonumber(ARGV[3])\n" +
"end\n" +
"local elapsed_time = tonumber(ARGV[3]) - last_update\n" +
"local new_tokens = math.min(tonumber(ARGV[1]), current_tokens + elapsed_time * tonumber(ARGV[2]))\n" +
"if new_tokens >= tonumber(ARGV[4]) then\n" +
" redis.call('hset', KEYS[1], 'tokens', new_tokens - tonumber(ARGV[4]))\n" +
" redis.call('hset', KEYS[1], 'last_update', tonumber(ARGV[3]))\n" +
" return 1\n" +
"else\n" +
" return 0\n" +
"end";
private final Jedis jedis;
private final int bucketCapacity;
private final int tokenRate;
public TokenBucketRateLimiter(Jedis jedis, int bucketCapacity, int tokenRate) {
this.jedis = jedis;
this.bucketCapacity = bucketCapacity;
this.tokenRate = tokenRate;
}
public boolean isAllowed(int requestTokens) {
long currentTime = System.currentTimeMillis() / 1000;
Object result = jedis.eval(LUA_SCRIPT, Collections.singletonList(TOKEN_BUCKET_KEY),
Collections.singletonList(String.valueOf(bucketCapacity),
String.valueOf(tokenRate),
String.valueOf(currentTime),
String.valueOf(requestTokens)));
return (Long) result == 1;
}
public static void main(String[] args) {
Jedis jedis = new Jedis("localhost", 6379);
TokenBucketRateLimiter rateLimiter = new TokenBucketRateLimiter(jedis, 100, 10);
for (int i = 0; i < 15; i++) {
boolean allowed = rateLimiter.isAllowed(1);
System.out.println("Request " + (i + 1) + " is allowed: " + allowed);
try {
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
jedis.close();
}
}
在这其中常量定义:
TOKEN_BUCKET_KEY:这是 Redis 里存储令牌桶状态的键名。
LUA_SCRIPT:该 Lua 脚本用于实现令牌桶算法的核心逻辑,会在 Redis 服务器端执行。
构造函数:
TokenBucketRateLimiter(Jedis jedis, int bucketCapacity, int tokenRate):接收 Jedis 客户端实例、令牌桶容量以及令牌生成速率作为参数。
isAllowed 方法:
此方法用来判断请求是否被允许。
先获取当前时间,接着调用 jedis.eval 方法执行 Lua 脚本,最后依据返回结果判断请求是否通过。
main 方法:
这里创建了一个 TokenBucketRateLimiter 实例,模拟 15 次请求并输出每次请求是否被允许的结果,最后关闭 Redis 连接