Demo : 人脸5个关键点检测

Demo : 人脸5个关键点检测

资料

代码:github
数据集:百度云盘 密码:jc6w

算法构建

人脸关键点检测,需要使用回归算法,因此一开始的想法就是前面使用多层卷积,适当添加残差网络作为基础模块,最后进行线性全连接层,直接预测5个坐标点的值。经过在网上查找资料,发现了PFLD框架,使用MoblieNet作为主干网络,同时将网络后三层进行拼接(cat),再进行全链接层的预测。

网络结构

backbone主干网络

PFLD框架的基础网络是基于MoblieNet V2进行修改的,在主干网络中使用了Inverted Residual Block基础模块和深度可分离卷积:

  • Inverted Residual Block基础模块是由1x1,3x3,1x1三个卷积构成的残差网络。

  • 深度可分离卷积是将输入的通道分组进行卷积(以下简称DW)。

这样可以保持网络性能的同事,减少网络的参数、运算量和计算时间。PFLD基础网络如下:

ImputOperatorchannelnumberstride
112x112x3Conv3x36412
56x56x64DW Conv3x36411
56x56x64Inverted Residual Block6452
28x28x64Inverted Residual Block12812
14x14x128Inverted Residual Block12861
14x14x128Inverted Residual Block1611
(S1) 14x14x16
(S2) 7x7x32
(S3) 1x1x128
Conv3x3
Conv7x7
-
32
128
128
1
1
1
2
1
-
S1,S2,S3Full Connection1361-

注:代码中已经不再使用此网络结构,在后文有说明代码优化了网络结构,但是依然留有此结构代码,可随意转换。

loss损失函数

损失函数没有使用PFLD论文中的结合人脸姿态角信息的损失函数,实际应用了wing loss而不加辅助信息对网络进行训练:
w i n g l o s s ( x ) = { w l n ( 1 + ∣ x ∣ / ϵ ) , if  ∣ x ∣ < w   ∣ x ∣ − C , otherwise  wingloss(x) = \begin{cases} wln(1+|x|/\epsilon), & \text{if }|x|<w\text{ } \\ |x| - C, & \text{otherwise }\text{} \end{cases} wingloss(x)={wln(1+x∣/ϵ),xC,if xw otherwise 

其他

为了减小计算量,实际训练过程中没有使用PFLD框架的辅助子网络,也就是没有添加姿态角信息进行训练。

运行环境

  • Ubuntu 18.04

  • Python 3.6

  • Pytorch 1.9

  • CUDA 11.4

  • 额外需要tqdm、tensoeboard,可以使用pip install 安装

  • 数据集:放入在data文件夹中,需自行分配训练集(train)、验证集(validation)和测试集(predict),并将图片数据和标签数据分别放入在Images文件夹和Annotations文件夹内,如下图:

    data
    ├── predict
    │ ├── Annotations
    │ └── Images
    ├── train
    │ ├── Annotations
    │ └── Images
    └── validation
    ├── Annotations
    └── Images

    注:predict下的Annotations文件夹内可以不存放标签数据,即对测试的数据仅仅进行预测,而不进行预测与真实之间的对比,后面有说明。

Train 训练

如果你将数据集存放在其他路径下,你需要修改程序根路径下的config.py文件,将其中的cfg.ROOT_TRAIN_PATH等进行修改。

如需要有其他修改,可以修改config.py 文件内的epoch、lr等等信息。

训练过程只需要运行train.py 文件,即在程序根路径下运行

python train.py

训练过程中,会自动将训练集和验证集进行训练,其中验证集并不对权重有所影响。训练结束后,训练过程中的信息会存储在./checkpoint/log/train.log文件中,可查看train.log文件,会记录每次epoch所产生的训练集loss、验证集loss和验证集RMSE。同时,训练过程中的这些信息会使用tensorboard工具将数据存放在./checkpoint/log/ 文件夹下,即 使用如下命令(在程序根路径下):

tensorboard --logdir=checkpoint/log

就可以在网页上查看数据图表。

训练后的权重文件存放在./checkpoint/weight/pfld_ultralight_final.pth

Test 测试

测试过程如训练过程,只需要运行test.py 文件,即在程序根路径下运行:

python test.py

测试数据集需要将图片文件存放在./data/predict/Images/ 文件夹中,而标签文件可选择是否存放在./data/predict/Annotations 文件夹中,下面进行说明:

测试过程会产生过程信息:time(每张图片使用的时间)、RMSE_112(计算图片resize成112大小之后的RMSE)和RMSE_basic(计算原始图片大小时的RMSE),存放在./checkpoint/predict_log/ 文件夹下,使用tensorboard工具即可查看,即在程序根路径下运行:(若没有标签文件,则只会产生time信息)

tensorboard --logdir=checkpoint/predict_log

测试结果存放在**./result/** 文件夹下:

图片信息存放在Images文件夹下,文件名字按照训练顺序排列,对应了在tensorboard工具显示下的Loss和RMSE的横轴。每张图片中,红点代表模型预测点,绿点代表模型真实点 。(若没有标签文件,则没有Loss和RMSE的信息,图片上也没有绿点显示真实点)

标签信息存放在Landmark_basic 文件夹下,分别以txt为后缀的文件存储,文件名字是进行预测的图片的名字,即每个标签文件与每张图片名字对应

运行完test.py文件后,会在终端打印出每张图片平均的运行时间,RMSE_112和RMSE_basic的平均值。(若没有标签文件,则只会显示平均时间)

注:test.py文件自动选择./checkpoint/weight/pfld_ultralight_final.pth 的权重文件。

算法优化与对比分析

在运行算法的初期,经过多次修改参数,获得一个相对良好的输出,参数如下:

seed = 10                              #随机种子,使得每次权重初始化的值一样
train_batch_size = 32      # batch_size 的选择,分别是训练集和验证集两个
val_batch_size = 8
epoches = 100                     # 100次迭代
lr = 0.01                                  # 学习率0.01
# 其他参数没有多加改动,因此不予列出

注:

  • seed随机种子,是在训练多次的情况下,选择的相对最优解
  • 在训练过程中,一般在70多次迭代的时候,Loss值已经趋近于稳定,但是为了控制变量,设置在100次迭代没有改变。
LR学习率优化

在学习率上,进行动态调整,使得网络更好的稳定:

图1:上图是只是用0.01学习率时的Loss分布

将学习率动态调整后,即MILESTONES = [20, 50, 75],在迭代20次,50次,75次之后,分别将学习率降低0.1倍,使得Loss会变得更加稳定,且RMSE_112最终会稳定在2.4左右。

图2:上图是进行动态调整学习率时的Loss分布
网络结构优化

在网上找到对PFLD网络结构的优化方案,即将Inverted Residual Block替换成Ghost Bottleneck,并细调网络结构。Ghost Bottleneck是以GhostModule为基础模块的,并使用后5层特征图进行拼接。网络结构如下:

ImputOperatorchannelnumberstride
112x112x3Conv3x36412
56x56x64DW Conv3x36411
56x56x64Ghost Bottleneck8032
28x28x80Ghost Bottleneck9632
14x14x96Ghost Bottleneck14442
7x7x144Ghost Bottleneck1611
7x7x16Conv3x33211
7x7x32Conv3x312811
(S1) 56x56x64
(S2) 28x28x80
(S3) 14x14x96
(S4) 7x7x144
(S5) 1x1x128
AvgPool
AvgPool
AvgPool
AvgPool
-
64
80
96
144
128
1
1
1
1
1
-
-
-
-
-
S1,S2,S3,S4,S5Full Connection1361-

使用如上的结构后,对网络有更好的性能:

图3:上图是网络结构优化后的Loss分布

可看到,相比图2,网络结构优化后使得Loss更低,并且RMSE_112能够达到1.98。

数据增强

数据增强是在数据集的基础上对样本图片进行一定的干扰,使得在预测时能够对干扰有一定的鲁棒性。

在增加了0.05概率的光度干扰后,模型的表现反而更加不稳定,我认为主要由于样本标签正确率不高,样本较少造成的。

因此最后仅仅使用网络结构优化后的模型。

  • 0
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
微信人脸检测demo是一种基于人工智能技术的软件应用,它能够通过微信平台对用户上传的图片进行人脸识别和检测。 该demo主要包含以下几个方面的功能:人脸检测、人脸识别人脸特征提取。 首先,人脸检测是该demo的基本功能之一。当用户上传一张图片时,该demo利用先进的人脸检测算法,能够准确地判断出图片中是否存在人脸,并标记出人脸的位置和轮廓。这个功能可以方便用户快速找到图片中的人脸部分,对人脸进行进一步的操作。 其次,人脸识别是该demo的另一个重要功能。通过训练和匹配算法,该demo能够判断出人脸图片中的具体身份,即对上传的人脸图片进行匹配,从已有的人脸数据库中找到对应的人脸信息。这个功能对于个人用户来说,可以方便地管理和查找自己的人脸信息,对于企业用户来说,可以用于人员的身份认证和出入管理等方面。 最后,人脸特征提取是该demo的另一个重要功能。通过分析人脸图像中的特征点、轮廓等特征,该demo能够提取出人脸的一些重要特征信息,如年龄、性别、表情等。这个功能可以为用户提供更多的人脸相关信息,同时也可以用于情感分析、人群统计等方面。 总而言之,微信人脸检测demo在微信平台上提供了一种便捷、准确的人脸识别和检测服务,不仅方便了个人用户的人脸管理,还能为企业用户提供更多的人脸相关信息,对于促进人脸识别技术的发展和应用有着重要的意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值