奇异值分解(SVD)

简介

SVD(Singular Value Decomposition)
记录一下学习奇异值分解中的小知识点,具体参考线代黄书和《统计学习方法》

由先前的知识我们得知对角化在许多应用中很重要,然而,并非所有矩阵都有分解式 A = P D P − 1 A=PDP^{-1} A=PDP1,且D是对角的

但分解 A = Q D P − 1 A=QDP^{-1} A=QDP1对任意 m × n m \times n m×n矩阵A都有可能!这类特殊分解称为奇异值分解。

奇异值分解

下面,我们对奇异值分解做如下介绍:
A = U Σ V T 其 中 U 是 m 阶 正 交 矩 阵 , V 是 n 阶 正 交 矩 阵 , Σ 是 m × n 矩 形 对 角 矩 阵 , 其 对 角 线 元 素 非 负 , 且 按 降 序 排 列 r = r a n k ( A ) U 1 = [ u 1 u 2 ⋯ u r ] 是 构 成 A 的 列 空 间 的 一 组 标 准 正 交 基 U 2 = [ u r + 1 u r + 2 ⋯ u n ] 是 构 成 A T 的 零 空 间 的 一 组 标 准 正 交 基 V 1 = [ v 1 v 2 ⋯ v r ] 是 构 成 A 的 行 空 间 的 一 组 标 准 正 交 基 V 2 = [ v r + 1 v r + 2 ⋯ v n ] 是 构 成 A 的 零 空 间 的 一 组 标 准 正 交 基 A = U\Sigma V^T \\ 其中U是m阶正交矩阵,V是n阶正交矩阵,\Sigma是m \times n矩形对角矩阵,其对角线元素非负,且按降序排列 \\ r = rank(A) \\ U_1 = \left[ \begin{matrix} u_1 & u_2 & \cdots & u_r \\ \end{matrix} \right] 是构成A的列空间的一组标准正交基 \\ U_2 = \left[ \begin{matrix} u_{r+1} & u_{r+2} & \cdots & u_{n} \\ \end{matrix} \right] 是构成A^T的零空间的一组标准正交基 \\ V_1 = \left[ \begin{matrix} v_1 & v_2 & \cdots & v_r \\ \end{matrix} \right] 是构成A的行空间的一组标准正交基 \\ V_2 = \left[ \begin{matrix} v_{r+1} & v_{r+2} & \cdots & v_{n} \\ \end{matrix} \right] 是构成A的零空间的一组标准正交基 A=UΣVTUmVnΣm×n线r=rank(A)U1=[u1u2ur]AU2=[ur+1ur+2un]ATV1=[v1v2vr]AV2=[vr+1vr+2vn]A

奇异值分解的作用

A = U Σ V T ≈ U r Σ r V r T ( 等 秩 的 奇 异 值 分 解 ) = [ u 1 u 2 ⋯ u r ] [ σ 1 0 ⋯ 0 0 σ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ σ r ] [ v 1 T v 2 T ⋮ v r T ] = σ 1 u 1 v 1 T + σ 2 u 2 v 2 T + ⋯ + σ r u r v r T A = U\Sigma V^T \thickapprox U_r\Sigma_r V_r^T(等秩的奇异值分解) = \\ \left[ \begin{matrix} u_1 & u_2 & \cdots & u_r \\ \end{matrix} \right] \left[ \begin{matrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r \\ \end{matrix} \right] \left[ \begin{matrix} v_1^T \\ v_2^T \\ \vdots \\ v_r^T \\ \end{matrix} \right] = \sigma_1 u_1v_1^T+\sigma_2 u_2v_2^T+\cdots+\sigma_r u_rv_r^T A=UΣVTUrΣrVrT=[u1u2ur]σ1000σ2000σrv1Tv2TvrT=σ1u1v1T+σ2u2v2T++σrurvrT
因此,原矩阵可以近似分解成如此若干 σ i u i v i T \sigma_i u_i v_i^T σiuiviT形式矩阵加和形式,而 σ i \sigma_i σi则表示了对应的权值大小, σ i \sigma_i σi越大,则权越大。不能想象,奇异值分解可以用来进行图像的压缩和去噪等功能。

特征值为0对应的特征向量在零空间中

特征值为0,意味着 A x = λ x = 0 Ax=\lambda x=0 Ax=λx=0,所以其特征值为0对应的特征向量即零空间。

矩阵A的特征向量必然在A的列空间中

由 A v = λ v , 得 A v = [ a 1 a 2 ⋯ a r ] [ v 1 v 2 ⋮ v r ] = v 1 a 1 + v 2 a 2 + ⋯ + v r a r 所 以 λ v = A v , 为 A 的 列 线 性 组 合 而 成 由Av=\lambda v,得Av = \left[ \begin{matrix} a_1 & a_2 & \cdots & a_r \\ \end{matrix} \right] \left[ \begin{matrix} v1 \\ v2 \\ \vdots \\ v_r \\ \end{matrix} \right] = v_1a_1+v_2a_2+\cdots+v_ra_r \\ 所以\lambda v = Av,为A的列线性组合而成 Av=λv,Av=[a1a2ar]v1v2vr=v1a1+v2a2++vrarλv=Av,A线

奇异值分解

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值