同余

定义

a与b对模m同余(即a%m=b%m),记作a≡b(mod m)。同余有很多性质。

性质

1.m|(a-b)=>a≡b(mod m)

证明:设a=q1m+r1,b=q2m+r2,则a-b=(q1-q2)m+r1-r2
∵m|(a-b)
∴(r1-r2)%m=0
∴m|(r1-r2)
∴存在q使r1-r2=qm
∴r1=qm+r2
∴r1%m=qm%m+r2%m即r1%m=r2%m
∴a≡b(mod m)

2.a≡b(mod m)=>m|(a-b)

证明:设a=q1m+r1,b=q2m+r2,则a-b=(q1-q2)m+r1-r2
∵a≡b(mod m)
∴r1%m=r2%m
∴存在q使r1=qm+r2
∴r1-r2=qm
∴m|(r1-r2)即m|(a-b)

3.a≡a(mod m)

很容易证明,略。

4.a≡b(mod m)<=>b≡a(mod m)

很容易证明,略。

5.a≡b(mod m),b≡c(mod m)=>a≡c(mod m)

证明:∵a≡b(mod m),b≡c(mod m)
∴m|(a-b),m|(b-c)
∴存在q使a-b=qm,存在p使b-c=pm
∴(a-b)+(b-c)=(p+q)m即a-c=(p+q)m
∴m|(a-c)
∴a≡c(mod m)

6.a≡b(mod m),c≡d(mod m)=>a±c≡b±d(mod m)

证明:∵a≡b(mod m),c≡d(mod m)
∴m|(a-b),m|(c-d)
∴存在q使a-b=qm,存在p使c-d=pm
∴(a-b)±(c-d)=(p±q)m
∴(a±c)-(b±d)=(p±q)m
∴m|((a±c)-(b±d))
∴a±c≡b±d(mod m)

7.a≡b(mod m),c≡d(mod m)=>ac≡bd(mod m)

证明:∵a≡b(mod m),c≡d(mod m)
∴a%m=b%m,c%m=d%m
∴(a%m)(c%m)=(b%m)(d%m)即(a%m)(c%m)%m=(b%m)(d%m)%m
∴ac%m=bd%m
∴ac≡bd(mod m)

8.gcd(m,c)=1,ac≡bc(mod m)=>a≡b(mod m)

证明:∵ac≡bc(mod m)
∴m|c(a-b)
∵gcd(m,c)=1,m|c(a-b)
∴c中不含m的任何因子,a-b中有m的所有因子
∴m|(a-b)
∴a≡b(mod m)

9.ac≡bc(mod m)=>a≡b(mod m/gcd(m,c))

证明:∵ac≡bc(mod m)
∴m|c(a-b)
设m0=m/gcd(m,c),c0=c/gcd(m,c)
∵a|b=>(a/c)|(b/c),其中a%c=0且b%c=0
∴m0|c0(a-b)
∵m0=m/gcd(m,c),c0=c/gcd(m,c)
∴gcd(m0,c0)=1
∴m0|(a-b)
∴a≡b(mod m0)即a≡b(mod m/gcd(m,c))

10.a≡b(mod m)=>a^n≡b^n(mod m)

很容易证明,略。

11.a≡b(mod m),n|m=>a≡b(mod n)

证明:∵a≡b(mod m)
∴m|(a-b)
∵n|m
∴n|(a-b)
∴a≡b(mod n)

运用

同余是数论的重要概念,会为之后的许多定理提供基础。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值