斐波那契数

定义

f(0)=1,f(1)=1
f(i)=f(i1)+f(i2),i>=2,iZ

通项公式

f(n)rf(n1)=s[f(n1)rf(n2)] ,即 f(n)=(r+s)f(n1)rsf(n2) ,所以r+s=1,r*s=-1。
那么:
f(n)rf(n1)=s[f(n1)rf(n2)]
f(n1)rf(n2)=s[f(n2)rf(n3)]
f(n2)rf(n3)=s[f(n3)rf(n4)]

f(3)rf(2)=s[f(2)rf(1)]
f(2)rf(1)=s[f(1)rf(0)]
联立以上n-1个式子,可得:
f(n)rf(n1)=sn1[f(1)rf(0)]=sn1(1r)
由于r+s=1,所以1-r=s,则
f(n)=sn1s+rf(n1)=sn+rf(n1)
=sn+r(sn1+rf(n2))
=sn+rsn1+rr(sn2+rf(n3))
=
=sn+rsn1+r2sn2++rnf(0)
=sn+rsn1+r2sn2++rn
这其实是首项为 sn ,公比为 rs 的一个等比数列,那么套等比数列求和公式:
f(n)=sn(rs)n+11rs1
=rn+1sn+1rs
由于r+s=1,r*s=-1的一个解是r= 152 ,s= 1+52 ,所以:
f(n)=55[(1+52)n+1(152)n+1]

矩阵乘法

详见矩阵乘法

拓展

ni=0f[i]=f[n+2]1
证明:因为 ni=0f[i]=f[0]+f[1]++f[n] f[n+2]1=f[n]+f[n+1]1
所以只要 f[n+1]1 等于 f[0]+f[1]++f[n1]=n1i=0f[i] ni=0f[i] 就等于 f[n+2]1 ,而这又是相同的格式,所以只要 f[0]+f[1]=f[3]1 ,后面的结论就都成立,而 f[0]+f[1]=f[3]1 显然成立。
所以 ni=0f[i]=f[n+2]1 得证。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值