TensorFlow 使用tf.QueueRunner,tf.Coordinator协同管理多线程队列

12 篇文章 0 订阅
4 篇文章 0 订阅
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import threading
import time

queue = tf.FIFOQueue(100, 'float')
enqueue_op = queue.enqueue([tf.random_normal([1])])

#表示需要启动5个线程,每个线程运行的是enqueue_op操作
qr = tf.train.QueueRunner(queue, [enqueue_op] * 5)

#将qr加入默认的tf.Graphkeys.QUEUE_RUNNERS集合
tf.train.add_queue_runner(qr)

out_tensor = queue.dequeue()

with tf.Session() as sess:
    coord = tf.train.Coordinator()

    #启动所有线程
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    for _ in range(3):
        print(sess.run(out_tensor)[0])
    coord.request_stop()

    # 等待所有线程退出
    coord.join(threads)

运行结果

-0.3205996
1.9861126
0.0073759328
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值