最短路之Dijkstra+堆优化(单源最短路)

优先队列实现对Dijkstra的优化
求单源最短路

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define mod 1000000007
#define IOS ios::sync_with_stdio(false)
#define endl '\n'

using namespace std;
typedef long long ll;
typedef pair<int, int>p;

const int maxn = 205;
int d[maxn];
int n, m;
vector<p>vec[maxn];

void init() {
	for (int i = 0;i <= n;++i)d[i] = INF;
	for (int i = 0;i < maxn;++i)vec[i].clear();
}
int main() {
	while (scanf("%d%d", &n, &m) != EOF) {
		init();//初始化
		for (int i = 0;i < m;++i) {//读边
			int x, y, z;
			scanf("%d%d%d", &x, &y, &z);
			vec[x].push_back(make_pair(z, y));
			vec[y].push_back(make_pair(z, x));
		}
		priority_queue<p, vector<p>, greater<p>>pq;//定义由小到大的优先队列
		int s, t;
		scanf("%d%d", &s, &t);
		d[s] = 0;
		pq.push(make_pair(d[s], s));//将第一个元素入队
		while (!pq.empty()) {
			int now = pq.top().second;//now现在是与第一个顶点距离最近的顶点 
			pq.pop();//通过now实现对其他边的松弛操作
			for (int i = 0;i < vec[now].size();++i) {
				int v = vec[now][i].second;
				if (d[v] > d[now] + vec[now][i].first) {
					d[v] = d[now] + vec[now][i].first;
					pq.push(make_pair(d[v], v));//将松弛后的边入队
				}
			}
		}
		if (d[t] == INF)printf("-1\n");
		else printf("%d\n", d[t]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzqwtc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值