Qwen1.5微调

本文详细描述了作者在使用Qwen大模型进行再训练时遇到的问题,包括显卡驱动、数据集准备、代码更新、精度设置、多卡与单卡训练以及内存优化,最后涉及模型合并的过程。
摘要由CSDN通过智能技术生成

引子

由于工作上需要,一直在用Qwen做大模型推理,有个再训练的需求,特此琢磨下Qwen的训练。OK,我们开始吧。

一、安装环境

查看显卡驱动版本

根据官网推荐

OK,docker在手,天下我有。

docker pull qwenllm/qwen:cu117

docker run -it --rm --gpus=all -v /mnt/code/LLM_Service/:/workspace qwenllm/qwen:cu117 bash

二、测试环境

1、数据集准备

2、下载代码

GitHub - QwenLM/Qwen1.5: Qwen1.5 is the improved version of Qwen, the large language model series developed by Qwen team, Alibaba Cloud.

cd /workspace/qwen1.5_train/Qwen1.5/examples/sft

3、配置

修改脚本,/workspace/qwen1.5_train/Qwen1.5/examples/sft/finetune.sh

执行命令, bash finetune.sh,报错如下:

修改如下:

报错,显卡不支持bf16,改为fp16精度

本地训练,修改脚本

继续报错,transformer没更新

pip install transformer -i Simple Index

执行命令, bash finetune.sh

继续报错,accelerate版本不对

pip install accelerate==0.27.2

单机多卡,继续报错。

修改为单机单卡,重启容器,docker run -it --rm --gpus='"device=1"' -v /mnt/code/LLM_Service/:/workspace qwen:v1.0 bash

out of memory,修改为7B模型重新尝试,下载地址https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat/tree/main

两条数据训练完成

4、显存占用

三、模型合并

from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
"""
使用该脚本,将lora的权重合并到base model中
"""

def merge_lora_to_base_model():
    model_name_or_path = '/workspace/model/Qwen1.5-7B-Chat'
    adapter_name_or_path = '/workspace/qwen1.5_train/Qwen1.5/examples/sft/output_qwen'
    save_path = 'finetune-qwen1.5-7b'

    tokenizer = AutoTokenizer.from_pretrained(
        model_name_or_path,
        trust_remote_code=True
    )
    model = AutoModelForCausalLM.from_pretrained(
        model_name_or_path,
        trust_remote_code=True,
        low_cpu_mem_usage=True,
        torch_dtype=torch.float16,
        device_map='auto'
    )
    model = PeftModel.from_pretrained(model, adapter_name_or_path)
    model = model.merge_and_unload()

    tokenizer.save_pretrained(save_path)
    model.save_pretrained(save_path)


if __name__ == '__main__':
    merge_lora_to_base_model()

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

要养家的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值