对比学习与多模态任务实战---对比学习

🌞欢迎来到深度学习的世界 
🌈博客主页:卿云阁

💌欢迎关注🎉点赞👍收藏⭐️留言📝

🙏作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢!


对比学习

  对比学习解决的是什么事情?现有的模型存在着什么问题?

      在CV领域,我们常用的预训练模型都是分类任务。在NLP领域,也是分类任务。但是分类模型一定合适嘛?比如在imagnet中的输出一定是1000个类别之一,模型在训练的时候,模型的潜力就会被标签所束缚。对比学习等,这些事好像都不需要我们准备标签。

我们小时候咋学习来着?

      认识的信息很有限,大部分负例都没见过,通过对比来分析谁是谁,比如一开始我们可能只知道猫,下次我们遇到的动物的时候就可以大致的判断其是猫(正样本),或者不是猫(负样本)


标签

      怎么定义正负样本呐?相信我们很快就有了想法,我们可以在海量的数据中打标签,把同一类的放到一起,互为正样本。这里我们好像又打上标签了,其实正负样本不是我们打标签的而是自动生成的。正负样本怎么构建呐?


如何表示特征


SimCLR

正样本:

      对同一个样本进行两种不同的数据增强变换,经过Encoder展开成向量,然后经过类似MLP(全连接的操作)变成输出向量(特征对比),计算两者之间的相似度。

下游任务(比如目标检测):

      此时我们用的是Encoder后的向量做的下游任务,原生的特征泛化能力更强。


BATCH很大,效果才能好


数据输入


特征提取


基本思想


实现分析


数据增强

对结果的影响


MLP


V2版本


多视角任务


BYOL


SimCSE

DropOut(随机去掉某些特征)

案例

DALLE2-pytorch/dalle2.png at main · lucidrains/DALLE2-pytorch · GitHub

这个例子中,不需准备数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卿云阁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值