【bioinformation 4】人工智能与苗头化合物筛选

🌞欢迎来到AI医疗的世界 
🌈博客主页:卿云阁

💌欢迎关注🎉点赞👍收藏⭐️留言📝

🌟本文由卿云阁原创!

📆首发时间:🌹2024年3月14日🌹

✉️希望可以和大家一起完成进阶之路!

🙏作者水平很有限,如果发现错误,请留言轰炸哦!万分感谢!


目录

人工智能与苗头化合物筛选概述

基于深度学习的苗头化合物筛选

CPI 数据库

蛋白质和化合物典型特征表示

基于深度学习的 CPI 预测模型

经典Y 型架构模型

基于注意力机制的模型

基于复合物的模型

CPI 预测模型性能评估

深度学习在苗头化合物筛选中的发展前景

趋势与挑战

实际应用

人工智能与苗头化合物筛选概述

     从第一种化合物药物诞生至今,科研人员一直在药物研发领域投入大量精力来对抗各种疾病,以提高人们的医疗保健水平。新型小分子药物的开发通常从生物学家确定疾病靶标开始,然后通过筛选技术在数以万计乃至数以百万计的化合物中挖掘出一组能够抑制或激活特定疾病靶标的活性分子。

       假设我们正在研究一种治疗肺癌的新药。我们的疾病靶点可能是某些在肺癌细胞中过度表达的蛋白质,或者是一些与肺癌细胞生长和扩散有关的基因。这些蛋白质和基因就像是我们需要瞄准的靶子,新药的作用就是调节或抑制它们的功能,从而达到治疗肺癌的目的。

       之后,再进行一系列的药代动力学、药效学、毒性测试以及结构修改来获得若干候选药物的苗头/先导化合物。接着,经过大量动物测试以及多阶段临床试验之后筛选出最佳候选药物。最后,经过药监局审核批准之后,候选药物成为上市药物,进而可以被患者服用

       药物研发过程中,高通量筛选(High throughput screening, HTS)和虚拟筛选(Virtual screening, VS)是获得苗头/先导化合物的两种传统技术。HTS 难以构建涵盖大量化合物的筛选库,VS则需要数量众多的高质量三维结构。这极大地限制了药物研发的速度。为解决这一局限性,工业界和学术界寻求利用人工智能技术来加速苗头/先导化合物筛选的进程。

    CPI 预测作为活性化合物筛选及寻找苗头化合物的关键步骤,不仅能够降低药物研发成本、缩短新药研发时间,而且可以提高新药研发的成功率。

   深度学习能够加速 CPI 预测主要基于以下两个方面。

(1)现有大量的 CPI 数据可用。目前各种数据库中小分子和蛋白质之间的相互作用已经收集了数十亿条,深度学习可以通过自动挖掘化合物、蛋白质及其相互作用之间的隐空间关联进行高效、快速的 CPI 筛选

(2)各种形式的生物和化学数据都可以通过特定的深度学习模型实现自动提取特征。深度学习一般可以处理四种类型的数据:序列(如语音)、网格(如图像)、(如网络)和决策流(如 GO 游戏)。

    对于 CPI 预测而言,化合物可以表示为序列或直接表示为分子图,蛋白质可以表示为序列或三维网格,CPI 可以被视为一个网络,包含两类节点:化合物和蛋白质,节点之间的边是它们的相互作用。

     下文首先总结了 CPI 预测中常见的数据库;其次介绍了化合物、蛋白质的典型特征表示方法;之后,从设计范式的角度介绍了最先进的 29 种基于深度学习的预测模型,包括 11 种经典Y 型框架模型、9种基于注意力机制的模型以及 9 种基于复合物的模型;最后,总结了当前 CPI 预测的挑战和发展趋势,并简要介绍了若干典型应用案例。


基于深度学习的苗头化合物筛选

CPI 数据库

      生物实验已经积累了许多 CPI 数据。这些数据不仅包括小分子与蛋白质的相互作用,还包括它们之间的由 IC50、Ki、Kd 和EC50等指标进行度量的结合亲和力

     STITCH 是目前最大的CPI 数据库,包含通过实验测定和预测的 CPI,该数据库包含约 16 亿对相互作用,900 万种蛋白质和 43 万种化合物之间的结合亲和力数据。   BindingDB 是第二大 CPI 数据库,它收集了 100 多万个小分子化合物和 8,000 多个潜在靶蛋白之间的 200 万个结合亲和力数据。与 STITCH 和BindingDB 相比,PDBbind是一个源自Protein Data Bank(PDB)的中型 CPI 数据库,它提供了超过 17,000 个实验确定的化合物-蛋白质复合物结构和亲和力数据,并额外提供了结合位点数据。与 PDBbind 类似,Binding MOAD 是 PDB 的另一个子集,它收集了超过 38,000 个具有高质量配体信息的蛋白质晶体结构,并使用从文献中提取的实验测定亲和力数据对其进行注释。此外,KIBA、Davis和 DUD-E也是研究中普遍使用的三个小型数据库。

     药物靶点蛋白相关的综合数据库主要有:KEGGDrugBankTTD,包含已批准的药物、未批准的化合物、实验验证的靶点、蛋白质、途径、疾病和其他生物对象。其中,KEGG 整合了基因组、化学和系统功能信息;DrugBank 包含有关药物和药物靶点的详细信息 ;TTD 提供了靶点、靶向疾病状况、代谢通路信息,以及相应药物和配体。这些数据库中提供的已批准、已验证的靶标可以作为 CPI 预测模型的结果验证。

蛋白质和化合物典型特征表示

       应用机器学习的首要步骤是特征表示。传统的特征工程通常将化合物和蛋白质编码为高维特征向量,其中每个维度都反映了化合物和蛋白质的特定属性。根据化学结构的维度,化合物的特征描述符包括基于结构表示的 1 维、2 维及 3 维等。分子指纹(fingerprint)是经典的化合物特征提取方法。化合物的分子指纹可分为:基于子结构基于路径圆形基于药效团以及复合分子指纹

structural notations    结构符号

qualitative descriptors  定性描述符

小分子可以转换成string序列,例如smiles式,还有分子指纹,分子图等形式。

蛋白质也可以表示成序列,如图中的ADTIPR,以及图,三维网格等等。

      分子和蛋白质之间的相互作用,可以看成是一个神经网络,其中分子和蛋白质作为节点,他它们之间的关系就体验在节点之间的映射。

      从特征工程中衍生出的蛋白质描述符主要包括基于序列和基于结构的描述符。(1)基于序列的描述符大致可分为基于 k-order 氨基酸组成和基于物理化学性质的描述符。基于 k-order 氨基酸组成的描述符反映了蛋白质序列中氨基酸k-mers(k 个氨基酸组成的短肽)的出现频率,基于物理化学性质的描述符则利用每个氨基酸的物理和化学性质(例如疏水性、范德华力和极性等)将氨基酸序列映射为实值序列进行特征提取;(2)基于结构的描述符可以大致分为基于拓扑结构、基于几何和基于距离图的描述符。基于拓扑结构的描述符根据从分子图生成的原子连接指数来描述氨基酸。基于几何的描述符则反映了与形状、大小、空间中的原子位置等相关的蛋白质结构特征。基于距离图的描述符首先通过计算 Cα 原子之间或靠近残基之间的成对距离来获得蛋白质的距离图,然后利用矩阵分解、网络或图像处理技术生成描述符值。

基于深度学习的 CPI 预测模型

      本节将介绍基于深度学习的 CPI 预测方法。首先介绍了经典 Y型架构模型Y 型架构的两个分支分别编码化合物蛋白质,以获得相应的嵌入表示。然后,描述了基于注意力机制的可解释模型。该模型通常利用额外的注意力层来表示形成相互作用的关键化合物-蛋白质特征。之后,概述了基于绑定复合物的模型,这些模型捕获了形成相互作用的细节因素。最后,评估了这些模型在二元预测任务(分类)结合亲和力预测任务(回归)中的性能。

经典Y 型架构模型

     作为最早的基于深度学习的 CPI 预测方法之一,DeepDTA提供了一个 Y 型框架,其中一个分支使用简化分子线性输入规范(Simplified molecular input line entry system, SMILES)编码化合物,另一个使用一维序列作为原始蛋白质表示来编码蛋白质,然后再由两个独立的卷积神经网络模块分别编码为相应的嵌入向量。接着将化合物和蛋白质的嵌入表示拼接后输入到一个或多个全连接层,最后输出 结合亲和力的预测结果。此外,化合物和蛋白质更多的特征表示也可以被整合到这个Y 型框架中。作为 DeepDTA 的扩展,WideDTA 使用 配体最大共同结构作为额外的原始化合物表示,使用蛋白质域和功能注释作为额外的原始蛋白质表示。类似地,DeepConv-DTI用 CNN  提取蛋白质序列的特征表示,并使用摩根指纹表示化合物。 MDeePred 模型构建了多种类型的蛋白质特征(氨基酸的序列、结构、进化和理化特性),同时使用圆形分子指纹表示化合物,然后再分别使用 CNN 和前馈神经网络将蛋白质和化合物编码为对应的嵌入向量,最后进行拼接并输入前向 DNN 中进行预测。

        由于存在大量活性未知的化合物和不完全注释的蛋白质,近期的工作试图利用大量未标记的化合物字符串和未标记的蛋白质序列来改善序列数据的表示。DeepCPI借鉴自然语言处理( Natural language processing, NLP)技术,利用潜在语义分析对化合物进行编码,利用 Word2Vec 以无监督的方式对蛋白质序列进行编码,并将生成的化合物和蛋白质的表征共同输入多模态 DNN。GANsDTA 采用两个生成对抗网络(Generative adversarial networks, GANs)分别作为化合物SMILES 字符串和蛋白质序列的无监督特征提取器,并进一步将提取的特征输入一维CNN 进行结合亲和力预测。除了基于 CNN对 SMILES 字符串和氨基酸序列进行特征编码外,MultiDTI建立了一个额外的异构网络,利用网络中化合物、蛋白质、副作用和疾病之间的关联作为约束条件来生成化合物和蛋白质的最终表示。由于化合物结构可以直接表示为分子图,图神经网络在小分子特征表示方面大放异彩。例如,GraphDTA 使用四种类型的图神经网络获得基于化合物的图表示,包括图卷积网络(Graph convolutional network, GCN)、图注意力网络(Graph attention network, GAT)、图同构网络(Graph isomorphism network, GIN)和GAT-GCN 组合,并采用多层一维CNN 来获得基于序列的蛋白质[189]表示。类似地,MONN利用 GCN 获得分子图表示,对原子和化学键使用独热编码,同时利用一维 CNN 对经过 BLOSUM62 数值化处理的蛋白质序列进行表示。另外,蛋白质也可以通过distance map或 contact map来进行表示。例如,DGraphDTA 首先通过PconsC4从每个序列生成蛋白质的 contact map,然后将该图构建为蛋白质图,其中节点为氨基酸,边表示其相邻关系,最后在分子图和蛋白质图上采用图神经网络,分别获得化合物表示和蛋白质表示。

基于注意力机制的模型

      尽管上述方法实现了高精度的CPI 预测,但它们不能明确指出哪些因素对相互作用有贡献,以及相应的贡献程度。由于注意力机制在揭开“黑箱”方面具有重要的能力,将注意力层整合到经典 Y 型架构模型中有利于解释化合物与蛋白质形成相互作用的原因。近期的 CPI 预测工作通过将注意力层整合到经典模型中,在寻找成对的关键蛋白质子序列(如残基或 n-gram 氨基酸)和化合物关键子结构方面起到了重要作用。它们的研究结果表明,注意力机制有利于解释化合物与蛋白质相互作用的原因。

     大多数基于注意力机制的模型都是分别针对化合物和蛋白质设计注意力模块。Gao 等人在CNN 以及 LSTM(Long short- term memory)之后分别使用了两个注意力模块,揭示了对结合有关键作用的蛋白质残基和化合物原子。同样,Abbasi 等人提出了 DeepCDA,将化合物SMILES 字符串、蛋白质序列分别传入一个 LSTM 块和一个 CNN 块,然后通过注意力机制来表明化合物子结构和蛋白质残基之间交互的强度。Zheng 等人设计双向 LSTM 结合多头注意力模块来解释对相互作用形成具有重要作用的关键蛋白质残基和化合物原子。

      此外,一些研究为化合物和蛋白质设计了联合注意力模块。 AttentionDTA 沿袭传统的 Y 型框架,在用数字编码化合物/蛋白质序列后,使用两个一维 CNN 来提取化合物和蛋白质各自的表征,然后应用联合注意力模块来捕获化合物子序列和蛋白质子序列,从而帮助寻找结合位点[199]。Tsubaki 等人应用联合注意力机制来捕获化合物的子结构和 3-gram 氨基酸对于形成 CPI 的贡献。Chen 等人提出的 TransformerCPI 模型,首先利用 Word2Vec 获得蛋白质的预训练嵌入向量,然后将其传入 Transformer 编码器,之后通过 GCN 获得化合物的嵌入向量,最后利用 Transformer 解码器中的多头注意力层来表明化合物原子和 3-gram 氨基酸对于形成 CPI 的贡献程度。 MATT_DTI 使用了一个额外的关系感知自注意力模块来加强药物化合物的信息,然后采用联合多头注意力模块来模拟化合物表征和蛋白质表征之间的桥梁。       

基于复合物的模型

      通常大量的蛋白质结构是很难获取的,但当有化合物-蛋白质复合物时,设计基于复合物的模型有助于 CPI  的预测。在早期阶段, AtomNet 直接采用三维CNN,将化合物-蛋白质复合物离散成三维网格后,获得活性复合物和非活性复合物的表征。一些类似的工作 采用不同的三维CNN 结构来编码复合物。由于三维网格的计算复杂性,近期一些工作关注化合物-蛋白质结合口袋的特征表示而不是整个复合物的特征表示法来加快复合物嵌入表示。例如, Lim  等人提出了一个以距离感知的图聚焦算法来获得三维口袋嵌入,该算法利用两个相邻矩阵上的一个共享门增强图注意力层来编码原子,并在嵌入空间刻画非共价相互作用的复合物和其单个分离结构的差异。Cang  等人通过采用新的代数拓扑描述符(Element-specific persistent homology, ESPH)将蛋白质-化合物复合物的特征转化为多通道一维图像表示,从而利用多通道 CNN 进一步编码复合物。此外,一些工作也在 Y 型框架下分别表示蛋白质结构和化合物结构。Gonczarek 等人通过对每个分子分别应用可学习的原子卷积和 softmax 操作,生成固定大小的蛋白质和小分子的指纹图谱。Gomes等人通过扩展Y 型框架,提出了三个并行的 ACNN,这是带有径向池化层的三维 CNN 变体,通过刻画蛋白质与化合物的联合体与复合体之间的差异来表示结合口袋中的非共价相互作用。Torng 等人建立了一个预先训练好的图自动编码器来提取蛋白质口袋(而不是整个蛋白质)的通用特征,并把预先训练好的架构。

CPI 预测模型性能评估

     在本节中,我们将在二元预测任务和亲和力预测任务下比较最先进的基于深度学习的CPI 预测模型。前者是一项分类任务,需要区分化合物是否与蛋白质结合;后者是一项回归任务,要求推断化合物与蛋白质结合的强度。总共对比了 29 个基于深度学习的预测模型和一个集成预测模型DeepPourse,分别在三个数据集上评估了 13 个模型的二元分类任务(表 2-1)和 12 个回归预测任务(表 2-1)。

     为了在二元预测任务中进行公平比较,我们选择了大多数论文中经常使用的三个数据集作为基准数据集:DUD-E、Davis 和 Human。这些模型的性能通常使用受试者工作特征曲线下面积(Receiver operating characteristic-area under curve, AUC)来进行衡量,AUC 越大表明预测效果越好。(1)在 DUD-E 数据集上对比了 8 个模型,其中MONN(AUC=0.974),DrugVQA(AUC=0.972)和 Lim等人(AUC=0.968)[205]这三个最近发布的模型显著优于其他 5 个模型。(2)在 Davis 数据集上对比了 4 个模型,其中 MolTran(s AUC=0.907)优于其他模型。(3)在 Human 数据集上调查了 4 个模型,其中 TransformerCPI是最好的(AUC=0.973)。此外,DrugVQA 在 DUD-E 和 Human 上均表现出令人满意的性能。总的来说,二元预测任务中的优秀模型包括 MONN、 DrugVQA 、 Lim、 TransformerCPI和 MolTrans。

数据库

方法

年份

AUC

数据划分

DUD-E

Ragoza et al.

2017

0.868

3-fold cross-validation

DUD-E

Torng et al.

2019

0.886

4-fold cross-validation

DUD-E

DrugVQA

2020

0.972

3-fold cross-validation

DUD-E

AtomNet

2015

0.895

Train (72targets) Test (30targets)

DUD-E

Gonczarek et al.

2018

0.904

Train (72targets) Test (30targets)

DUD-E

Tsubaki et al.

2019

0.940

Train (72targets) Test (30targets)

DUD-E

Lim et al.

2019

0.968

Train (72targets) Test (25targets)

DUD-E

MONN

2020

0.974

Train (72 targets) Test (30 targets)

Davis

DeepDTA

2018

0.880

5-fold cross-validation

Davis

Tsubaki et al.

2019

0.840

5-fold cross-validation

数据库

方法

年份

AUC

数据划分

Davis

DeepConv-DTI

2019

0.884

5-fold cross-validation

Davis

MolTrans

2021

0.907

5-fold cross-validation

Human

Tsubaki et al.

2019

0.97

5-fold cross-validation

Human

GraphDTA

2020

0.96

5-fold cross-validation

Human

DrugVQA

2020

0.964

5-fold cross-validation

Human

TransformerCPI

2020

0.973

5-fold cross-validation

        在结合亲和力预测任务中,我们选择了广泛使用的 Davis 数据集作为基准数据集,并将 12 个基于深度学习的回归模型进行比较(表 2-2)。亲和力预测的性能使用一致性指数(Consistency index, CI)和均方误差(Mean square error, MSE)来衡量。CI 越大,MSE 越低,预测效果越好。调查结果表明,DGraphDTA[195]在 CI 和 MSE 方面表现出最佳性能。此外,我们发现尽管基于注意力机制的模型(例如 AttentionDTA、DeepCDA、MATT_DTI)有更好的解释性,但它们并未优于经典模型 DGraphDTA。因此,良好的特征表示对于 CPI 预测至关重要。另外,与二元任务相比,亲和力预测任务比二元预测任务更难。

方法

年份

蛋白质表示

化合物表示

CI

MSE

DeepDTA

2018

1D+CNN

1D+CNN

0.878

0.261

DeepCPI

2019

1D+NLP

1D+NLP

0.867

0.293

WideDTA

2019

1D+CNN

1D+CNN

0.886

0.262

AttentionDTA

2019

1D+CNN

1D+CNN

0.893

0.216

GANsDTA

2020

1D+GAN

1D+GAN

0.881

0.276

DeepGS

2020

1D+CNN

1D+CNN&2D+GAT

0.882

0.252

MDeePred

2020

2D+CNN

1D+DNN

0.886

0.254

 

深度学习在苗头化合物筛选中的发展前景

趋势与挑战

尽管当前基于深度学习的模型展示了良好的CPI 预测性能,但仍然存在如下趋势和挑战:

  1. 如何利用大量未标记的化合物和蛋白质。无监督学习(如 DeepCPI)、半监督学习(如 GANsDTA)和预训练策略(如 DeepAffinity)的成功应用表明,利用丰富的未标记数据(序列)可以增强化合物和蛋白质表示,从而实现更好的 CPI 预测。如何利用更多的深度学习技术(例如对比学习)学习更好的化合物和蛋白质表示成为了未来发展趋势。
  2. 由于具有标记的化合物表示数据较为稀缺,因此可以通过自监督学习对未标记数据的模型进行预训练,然后将学习到的模型转移到下游任务。最近的一些研究工作利用自监督学习方法来表示基于化合物SMILES 字符串和分子图的表示。然而,这些方法主要侧重于学习节点级表示,不能显式地学习全局图级表示,导致图级任务的收益有限[217]。因此,开发有效的图级自监督方法非常重要。

(3)Y 型架构趋向于演变为叉状框架,以适应多种化合物或蛋白质来源(例如WideDTA、DeepGS)。虽然利用 3D 结构可增强化合物和蛋白质的表示。然而,这些结构不仅需要高额算力,而且基于复合物的模型与利用化合物和蛋白质序列以及分子图的模型相比并没有得到显著的性能提升。一种可能的解决方案是获得更复杂的复合物数据,而另一种是开发基于迁移学习的模型来将化合物和靶标表示从序列域迁移到 3D 复杂域,后者在未来几年可能更实用。

  1. 现有基于深度学习的预测模型的分析表明,在表征化合物-蛋白质结合对时,非共价相互作用的表示是至关重要的。结合位点有助于理解非共价相互作用。目前,基于深度学习的方法已经逐渐应用在结合位点预测中,例如DeepSite和DeepSurf。这些方法可以整合到现有模型中来增强CPI 预测。
  2. 注意力机制已在一定程度上展示了其对于 CPI 形成机制的可解释性。但是,当前的研究方法仅通过一个或几个示例进行评估,在大规模数据集中可能出现不一致的解释性结果。此外,目前还缺乏统一的标准来系统地评估各种基于注意力模型的可解释性。因此,应该形成统一的评估指标,以便挖掘化合物和蛋白质的结合规则。相比之下,与基于深度学习的“黑盒”模型相比,“白盒”模型可能是捕捉结合机制的新尝试。总之,提高化合物-蛋白质结合机制的可解释性是未来发展趋势,不仅可以筛选潜在 CPI,还可以指导后续的先导化合物优化。
实际应用

       CPI 预测只是寻找苗头/先导化合物的第一步。为了加快苗头化合物的发现过程,一些网络服务器根据预测的 CPI 来执行化合物虚拟筛选。例如,基于 DNN 的DeepScreening 可根据结合亲和力针对特定靶标进行大规模的化合物筛选。BindScope 是一个基于 CNN 的交互式网络应用程序,提供了大规模的活性/非活性化合物分类。除了 CPI 预测中的通用模型和 Web 服务器外,研究人员还开发了针对特定疾病的方法。例如,Zhang 等针对 2019-nCov(SAR-COV-2)主要治疗靶点 3C 样蛋白酶,开发了基于深度神经网络的药物筛选管线,用于快速筛选其候选配体和多肽药物。TranScreen 通过在多任务化合物数据库(MoleculeNet)上预训练一组 GCN,将学习到的 GCN 迁移到人类癌症主要突变来源之一 p53 基因的活性化合物筛选过程中。近年来,随着深度学习的快速发展,基于深度学习的小分子药物研发也取得重大突破且部分候选药物已进入临床试验。例如,Insilico Medicine 和药明康德在 2019 年通过深度学习模型,仅在 23 天就产生了 6 个先导化合物,并在 46 天内从中筛选出 1 个具备良好药代动力学行为的候选药物,最后通过实验验证了其对于 DDR1 激酶的高效抑制作用。2021 年 4 月 9 日,由 Exscientia 设计的首个基于 Al 技术的肿瘤免疫分子成功进入临床(Exscientia | AI Drug Discovery | Pharmatech)。2021 年 4月 30 日,药物牧场(DRUG FARM)基于 AI 技术发现了治疗乙肝的候选药物 DF-006 并获批国际中心(新西兰)一期临床,是中国首个从靶点 发现 进 入临床 的全 球 首创新 药( https://www.drug- farm.com/home)。Tan 等人通过开发 RNN 和 MTDNN(一种多任务 DNN),成功筛选出了具有所需靶标活性的新型抗精神病分子。Liu等人通过建立预训练的自注意力消息传递神经网络(P-SAMPNN),鉴定了五种抗骨质疏松症生物活性天然产物。这些案例都证明了深度学习技术赋予新药研发的广阔场景。深度学习技术能够快速发现新的活性化合物并产生新的苗头/先导化合物,可推动新型药物发现范式的发展。随着我国医药产业创新发展的加速推进,人工智能技术尤其是深度学习技术或将成为制药行业的一个宝贵工具。

       CPI  筛选是活性化合物筛选及寻找苗头化合物过程中的重要环节。基于深度学习的 CPI 预测模型利用化学和生物大数据加快了筛选过程。本章对 CPI 预测方法进行了全面的调查。首先,简要地回顾了小分子化合物、蛋白质、两者复合物的常见数据库。其次,介绍了化合物、蛋白质的典型特征表示方法,包括由传统特征工程产生的各种分子指纹和不同的描述符以及基于序列和基于结构的描述符的蛋白质特征。然后,从设计范式的角度简要介绍了最先进的深度学习CPI预测模型,包括经典两分支特征表示的 Y 型模型、利用注意力机制挖掘关键成对“蛋白质子序列-化合物子结构”的 Y 型模型、聚焦化合物-蛋白质的复合物或其结合袋表示的模型。接着,在经典数据集上研究对比了各类预测模型的性能。最后,总结了当前基于深度学习的 CPI 预测方法存在的趋势、挑战以及实际应用。

 

 
 

  • 11
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卿云阁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值