引言
数学中有一类“项链问题”,举个例子:用三颗红色和三颗蓝色的珠子可以组成多少种不同种类的项链,我们心算一下就可以得到答案(3 种),但是如果颜色种类和珠子颗数变得很大,不仅没办法心算,而且用初等数学的方法也无法求解这个问题。抽象代数的群论中的 Burnside 引理则可以解决这个问题,我们来看看是如何做到的。为了阐述方便,我们依然用三颗红色和三颗蓝色珠子的例子。
什么是不同种类的项链
对每个珠子进行标号,虽然可以选择两种颜色,但某些排列组合的项链经过旋转种类是一样的,比如如下两种:
接下来我们看看项链可以经过哪些变换,以及如果不考虑变换,静态的项链有多少种不同的染色方案。
项链的变换其实就是刚性变换:旋转和反射。容易知道六颗珠子的项链有 6 种旋转(顺时逆时取其一)和 6 种反射(6 条对称轴),一共 12 种变换,如下图:
根据排列组合原理,三红三蓝六颗珠子的静态染色方案一共有:
C
6
3
=
20
C_{6}^{3}=20
C63=20 种
不难想象,经过旋转和反射后,最终只有三种形态的项链,也就是:
这里像不像有机物?事实上有机物的同分异构体本质上也是“项链问题”,可以用同样的方法计算。在这 20 种静态染色方案中,有 12 种其实是形态一,6 种是形态二,2 种是形态三。
背后的数学规律
因此我们得到了 20 种项链的静态染色方案,记为集合 X X X,以及 12 种变换,记为变换群 G G G。同时我们把三种项链的形态记为三个“轨道”,分别是 Ω 1 \Omega_1 Ω1、 Ω 2 \Omega_2 Ω2、 Ω 3 \Omega_3 Ω3,直观含义就是,在 12 种变换的作用下,20 种静态染色方案的项链可以形成 3 个轨道,在同一个轨道中的,不同染色方案的项链可以通过 12 种变换自由来去,不在同一个轨道中的,则无法通过 12 种变换到达彼此。
我们看到这里有一个规律,轨道一上有 12 个静态染色方案,能使其中任意一个染色方案保持不变的变换只有 1 种(不变换),轨道二上有 6 个静态染色方案,而能使其保持不变的变换有 2 种(不变换和按一个对称轴反射),轨道三上有 2 个静态染色方案,而能使其保持不变的变换有 6 种(不变换,旋转 2、4 个珠子,和按三个对称轴反射)。这三者乘积都等于 12。这个规律并不是巧合,而是对于同样的问题普遍成立,也就是:
∣ Ω ∣ × ∣ G a ∣ = ∣ G ∣ |\Omega|\times|G_a|=|G| ∣Ω∣×∣Ga∣=∣G∣
这里的 G a G_a Ga 表示使某个静态染色方案 a a a 保持不变的变换集合,显然它是 G G G 的一个子群(称为稳定子群)。上述公式无论对于哪个轨道都成立。假设有 N N N 个轨道,在上述等式两边乘以 N N N,就得到:
∣ Ω ∣ × ∣ G a ∣ × N = ∣ G ∣ × N |\Omega|\times|G_a|\times N=|G|\times N ∣Ω∣×∣Ga∣×N=∣G∣×N
上述等式右边就是变换个数和轨道数的乘积,而等式左边,如果按变换维度看,是在每一种变换下能够保持不动的静态染色方案个数的总和;如果按染色方案维度看,则是能使每一个静态染色方案不动的变换个数的总和。这里蕴含的原理是:每个轨道内算出的不动变换总和是一样的,因此计算某个轨道内使所有染色方案的不动变换的总和再乘以 N N N 就可以得到全部染色方案的不动变换总和。按照变换的维度,我们记: ∑ g ∈ G χ ( g ) \sum_{g\in G}\chi(g) ∑g∈Gχ(g), χ ( g ) \chi(g) χ(g) 表示 g g g 在 X X X 上的不动点数目,于是就有:
∑ g ∈ G χ ( g ) = ∣ G ∣ × N \sum_{g\in G}\chi(g)=|G|\times N ∑g∈Gχ(g)=∣G∣×N
即: N = 1 ∣ G ∣ ∑ g ∈ G χ ( g ) N=\dfrac{1}{|G|}\sum_{g\in G}\chi(g) N=∣G∣1∑g∈Gχ(g)
这就是 Burnside 引理。
实例计算
使用本篇的例子,我们来计算一下:
-
在不变换下能保持不动的染色方案,毫无疑问是全部 20 种:
-
在逆时针旋转一颗珠子的变换下能保持不动的染色方案,相当于要求 6 颗珠子的颜色相同,因此不存在
-
在逆时针旋转两颗珠子的变换下能保持不动的染色方案,相当于要求 1,3,5 号珠子的颜色相同,2,4,6 号珠子的颜色也相同,这样有 2 种:
-
在逆时针旋转三颗珠子的变换下能保持不动的染色方案,等同于旋转一颗,因此不存在
-
在逆时针旋转四颗珠子的变换下能保持不动的染色方案,等同于旋转两颗,这样有 2 种:
-
在逆时针旋转五颗珠子的变换下能保持不动的染色方案,等同于旋转一颗,因此不存在
-
在 1,4 珠子为对称轴反射的变换下能保持不动的染色方案,相当于要求 2,6 号珠子颜色相同,3,5 号珠子颜色相同,因此有 4 种
-
在 2,5 珠子为对称轴反射的变换下能保持不动的染色方案,同理有 4 种
-
在 3,6 珠子为对称轴反射的变换下能保持不动的染色方案,同理有 4 种
-
在 1,2,3 和 4,5,6 珠子之间的对称轴反射的变换下能保持不动的染色方案,相当于要求 1,2 号珠子颜色相同,3,4 号珠子颜色相同,5,6 号珠子颜色相同,在三红三蓝的情况下不存在
-
在 2,3,4 和 1,5,6 珠子之间的对称轴反射的变换下能保持不动的染色方案,同理是 0 种
-
在 3,4,5 和 1,2,6 珠子之间的对称轴反射的变换下能保持不动的染色方案,同理是 0 种
套用一下 Burnside 引理,就是:
N = 1 ∣ G ∣ ∑ g ∈ G χ ( g ) = 1 12 ( 20 + 2 + 2 + 4 + 4 + 4 ) = 3 N=\dfrac{1}{|G|}\sum_{g\in G}\chi(g)=\dfrac{1}{12}(20+2+2+4+4+4)=3 N=∣G∣1∑g∈Gχ(g)=121(20+2+2+4+4+4)=3
所以答案是用三颗红色和三颗蓝色的珠子可以组成 3 种不同种类的项链
定理证明思路
任何一本教科书都有 Burnside 引理的证明过程,证明其需要集合、群、子群、陪集的基础知识。下面说一下 Burnside 引理证明的理解和解释。
群 G G G 作用于集合 X X X 上,则有:
N
=
1
∣
G
∣
∑
g
∈
G
χ
(
g
)
N=\dfrac{1}{|G|}\sum_{g\in G}\chi(g)
N=∣G∣1∑g∈Gχ(g)
N
N
N 表示
X
X
X 中的轨道数(和
G
G
G 有关),
χ
(
g
)
\chi(g)
χ(g) 表示
g
g
g 在
X
X
X 上的不动点数目。
先化为:
N
×
∣
G
∣
=
∑
g
∈
G
χ
(
g
)
N\times |G|=\sum_{g\in G}\chi(g)
N×∣G∣=∑g∈Gχ(g)
做一个表格:
x j x_j xj | |
---|---|
g i g_i gi | g i ( x j ) = x j g_i(x_j)=x_j gi(xj)=xj 则取 1,否则取 0 |
在这个表格中,如果按行求和就是等式的右边:
∑
g
∈
G
χ
(
g
)
\sum_{g\in G}\chi(g)
∑g∈Gχ(g)
下一步,我们只需要证明如果按列求和就是等式左边:
N
×
∣
G
∣
N\times |G|
N×∣G∣ 就可以了。
于是我们对列按不同的轨道分组,也就是:
x 1 j x_{1j} x1j | … x k j x_{kj} xkj… | x n j x_{nj} xnj | |
---|---|---|---|
g i g_i gi | g i ( x 1 j ) = x 1 j g_i(x_{1j})=x_{1j} gi(x1j)=x1j 则取 1,否则取 0 | … | g i ( x n j ) = x n j g_i(x_{nj})=x_{nj} gi(xnj)=xnj 则取 1,否则取 0 |
上表中,对
x
j
x_j
xj 重新做了排序,因为集合可以看成不同轨道的无交并,因此一共分成
N
N
N 个轨道,下面要证明的是每个轨道按列求和都是
∣
G
∣
|G|
∣G∣,因此所有列求和就是:
N
×
∣
G
∣
N\times |G|
N×∣G∣,分两个步骤。
为了方便说明,我们令某一个轨道的集合为
Ω
k
\Omega_{k}
Ωk。
第一步先证明
Ω
k
\Omega_{k}
Ωk 这个轨道上每一个
x
k
j
x_{kj}
xkj 的稳定子群都是共轭关系,证明了这一点,就可以得到这些
x
k
j
x_{kj}
xkj 的稳定子群的个数都是一样的;
第二步再利用计数公式,既然
x
k
j
x_{kj}
xkj 的稳定子群的个数都是一样的,那么对于任意的
G
x
k
j
G_{x_{kj}}
Gxkj,有:
∣
G
x
k
j
∣
×
∣
Ω
k
∣
=
∣
G
∣
|G_{x_{kj}}|\times |\Omega_{k}| = |G|
∣Gxkj∣×∣Ωk∣=∣G∣
轨道上每一个元素的稳定子群都是共轭关系
也就是需要证明:
群
G
G
G 作用于集合
X
X
X 上,
a
∈
X
,
G
a
a\in X,G_a
a∈X,Ga 为
a
a
a 的稳定子群,则有:
G
g
(
a
)
=
g
G
a
g
−
1
G_{g(a)}=gG_ag^{-1}
Gg(a)=gGag−1
证明分两步,先证任意左边的元素属于右边,再证任意右边的元素属于左边。
-
∀ h ∈ G g ( a ) \forall h\in G_{g(a)} ∀h∈Gg(a),将其写成: h = g g − 1 h g g − 1 = g ( g − 1 h g ) g − 1 h=gg^{-1}hgg^{-1}=g(g^{-1}hg)g^{-1} h=gg−1hgg−1=g(g−1hg)g−1,
考虑中间的 g − 1 h g g^{-1}hg g−1hg,
根据定义有: g − 1 ( h ( g ( a ) ) ) = g − 1 ( g ( a ) ) = a g^{-1}(h(g(a)))=g^{-1}(g(a))=a g−1(h(g(a)))=g−1(g(a))=a
所以 g − 1 h g g^{-1}hg g−1hg 是属于 G a G_a Ga,也就是 g ( g − 1 h g ) g − 1 g(g^{-1}hg)g^{-1} g(g−1hg)g−1 属于 g G a g − 1 gG_ag^{-1} gGag−1,也就是 h ∈ g G a g − 1 h\in gG_ag^{-1} h∈gGag−1 -
任取 g G a g − 1 gG_ag^{-1} gGag−1 中的一个元素,其显然有 g h g − 1 ghg^{-1} ghg−1 的形式,其中 h ∈ G a h\in G_a h∈Ga
对于这样的 g h g − 1 ghg^{-1} ghg−1,有 g h g − 1 g ( a ) = g h ( a ) = g ( a ) ghg^{-1}g(a)=gh(a)=g(a) ghg−1g(a)=gh(a)=g(a),
这样也就是说明了 g h g − 1 ∈ G g ( a ) ghg^{-1}\in G_{g(a)} ghg−1∈Gg(a)
既然是共轭关系,那么这两个群的阶就是相等的,这是因为共轭关系可以构建一一映射,其中满射是根据定义显然的,单射可以用消去律证明。
计数公式
群
G
G
G 作用于集合
X
X
X 上,
Ω
a
\Omega_{a}
Ωa 是
X
X
X 的一个轨道,则对于任意的
a
∈
Ω
a
a\in \Omega_{a}
a∈Ωa,有:
∣
G
a
∣
×
∣
Ω
a
∣
=
∣
G
∣
|G_{a}|\times |\Omega_{a}| = |G|
∣Ga∣×∣Ωa∣=∣G∣
这里的证明要用到拉格朗日定理:
H
H
H 是
G
G
G 的一个子群,则有:
∣
H
∣
×
[
G
:
H
]
=
∣
G
∣
|H|\times [G:H]=|G|
∣H∣×[G:H]=∣G∣,
[
G
:
H
]
[G:H]
[G:H] 是
H
H
H 的陪集个数。
回到计数公式,显然
G
a
G_a
Ga 是
G
G
G 的一个子群,所以只要证明
Ω
a
\Omega_{a}
Ωa 和
G
a
G_a
Ga 的陪集是一一对应关系即可。
一方面,
Ω
a
\Omega_{a}
Ωa 表示的是
a
a
a 在
G
G
G 的作用下,能变换成其他元素的一个集合,可能存在不同的
g
1
,
g
2
∈
G
g_{1},g_{2}\in G
g1,g2∈G,使得
g
1
(
a
)
=
g
2
(
a
)
g_{1}(a)=g_{2}(a)
g1(a)=g2(a)。另一方面,子群
G
a
G_a
Ga 的陪集也是有代表元的,不同的
g
1
G
a
,
g
2
G
a
g_{1}G_{a}, g_{2}G_{a}
g1Ga,g2Ga 同样可能是同一个陪集。事实上,
Ω
k
\Omega_{k}
Ωk 和
G
a
G_a
Ga 是相洽的,也就是说如果不同的
g
1
,
g
2
∈
G
g_{1},g_{2}\in G
g1,g2∈G,使得
g
1
(
a
)
=
g
2
(
a
)
g_{1}(a)=g_{2}(a)
g1(a)=g2(a),那么这
g
1
G
a
,
g
2
G
a
g_{1}G_{a}, g_{2}G_{a}
g1Ga,g2Ga 就是是同一个陪集,反之亦然。这是因为:
g
1
(
a
)
=
g
2
(
a
)
⇔
g
1
−
1
g
2
(
a
)
=
a
⇔
g
1
−
1
g
2
∈
G
a
⇔
g
1
G
a
=
g
2
G
a
g_{1}(a)=g_{2}(a)\Leftrightarrow g_{1}^{-1}g_2(a)=a\Leftrightarrow g_{1}^{-1}g_2\in G_a\Leftrightarrow g_1G_a=g_2G_a
g1(a)=g2(a)⇔g1−1g2(a)=a⇔g1−1g2∈Ga⇔g1Ga=g2Ga
这样一来,就很容易构造出 Ω a \Omega_{a} Ωa 和 G a G_a Ga 的陪集之间的一一对应关系,只需要选择一个代表元 g g g,将 Ω a \Omega_{a} Ωa 中的 g ( a ) g(a) g(a) 对应 G a G_a Ga 的陪集中的 g G a gG_a gGa,显然既是单射又是满射。