Redis 数据类型
五种redis的类型与java的数据类型的类比
- string --> String
- hash --> Hashmap
- list --> LinkList
- set --> HashSet
- zset --> TreeSet
String类型
redis 数据存储格式
- redis自身是一个Map类型的存储方式,其中所有的数据都是采用key:value的形式存储
- 我们讨论的数据类型指的是存储的数据类型,也就是value部分的类型,key部分永远都是字符串
String基本信息
存储的数据:单个数据,是最简单的数据存储类型,也是最常用的数据存储类型
存储数据的格式:一个存储空间保存一个数据
存储内容:通常使用字符串,如果字符串以整数的形式展示,可以作为数字操作使用(但是仍是字符串)
常用命令
- 添加/修改数据
set key value
- 获取数据
get key
- 删除数据
del key
- 添加/修改多个数据
mset key1 valueq key2 value2 …
- 获取多个数据
mget key1 key2 …
- 获取数据字符个数(字符串长度)
strlen key
- 追加信息到原始信息后部(如果原始信息存在就追加,否则新建)
append key value
String类型作为数值时的增减
业务场景1
大型企业级应用中,分表操作是基本操作,使用多张表存储同种类型数据,但是对应的主键id必须保证统一性,不能重复。
Oracle数据库具有sequence设定,可以解决该问题,但是MySQL数据库并不具有类似的机制,那么如何解决?
解决方案
- 在redis中设置一个数值数据增加指定范围的值
incr key //自增1
incrby key increment //增加指定数值
incrbyfloat key increment //增加一个浮点数
- 设置数值数据减少指定范围的值
decr key //自减1
decrby key increment //减少指定数值
String作为数值操作时的注意事项
- string在redis内部存储默认就是一个字符串,当遇到增减类操作incr,decr时会转成数值型进行计算
- redis所有的操作都是原子性的,采用单线程处理所有业务,命令是一个一个执行的,因此无需考虑并发带来的数据影响。
- 按数值进行操作的数据,如果原始数据不能转成数值,或超过了redis数值上线范围,将会报错。9223372036854775807 (java中long型数据最大值,Long.MAX_VALUE)
String 数据时效性设置
业务场景2
场景一:“某某综艺”,启动海选投票,只能通过微信投票,每个微信号每4个小时只能投1票。
场景二:电商商家开启热门商品推荐,热门商品不能一直处于热门期,每种商品热门期维持3天,3天后自动取消热门
场景三:新闻网站会出现热点新闻,热点新闻最大的特征是对时效性,如何自动控制热点新闻的时效性
解决思路
给用户设置一个唯一的id,并为其设置一个有效时长,当时间已经超过设定时间后将id删除。
解决方案
设置数据具有指定的声明周期
redis 控制数据的生命周期,通过数据是否失效控制业务行为,适用于所有具有时效性限定控制的操作:
setex key seconds value //增加、修改键值对并为其设定生命周期
psetex key milliseconds value //功能与上面一直,秒的单位不同
String 类型的注意事项
数据操作成功与否的反馈
1、表示运行结果是否成功
(integer)0 –> false 失败
(integer)1 –> true 成功
2、表示运行结果值
(integer)3 –> 3 3个
(integer)1 –> 1 1个
数据未获取到
(nil)等同于null
String类型之高热度数据访问加速
业务场景3
主页高频访问信息显示控制,例如微博大V主页显示粉丝数与微博数量,这些数据就是热度数据,不断发生变化,这些数据如何放入Redis?
解决方案
两种实现方式:
-
在Redis中为大V用户设定用户信息,以用户主键和属性值作为key,后台设定时间定时刷新即可。
- user: id :5765898790:focuss:3050
- user: id :5765898790:fans:117492300
- user: id :5765898790:blogs:117744
-
在Redis中以json格式存储大V用户,定时刷新。
- set user: id :5765898790 {id:5765898790,focuss:3050,fans:117492300,blogs:117744}
数据库中的热点数据key命名惯例:
hash类型
String类型存储的困惑
对象类数据的存储如果具有较为频繁的更新需求,操作会显得笨重,存容易,改麻烦。
为了区别与Redis中的键值对的称呼,hash中的键成为field,而key特指Redis的键。
hash类型
新的存储需求:对一系列存储的数据进行编组,方便管理,典型应用存储对象信息
需要的内存结构:一个存储空间保存多少个键值对数据
hash类型:底层使用哈希表结构实现数据存储
基本操作
- 添加/修改数据
hset key field value
- 获取数据
hget key field
hgetall key
- 删除数据
hdel key field1 [field2]
实例:
- 添加/修改多个数据
hmset key field1 value1 field2 calue2
- 获取多个数据
hmget key field1 field2 …
- 获取哈希表中字段的数量
hlen key
- 获取哈希表中是否存在指定的字段
hexists key field
hash类型数据扩展操作
获取哈希表中所有的字段名和字段值
hkeys key //字段名
hvals key //字段值
设置指定字段的数值数据增加指定范围的值
hincrby key field increment //指定数值增长指定的数
hincrbyfloat key field increment
user1年龄增加2岁,再增加0.5岁:
hash类型数据操作的注意事项
- hash类型下的value只能存储字符串,不允许存储其他类型数据,不存在嵌套现象。如果数据未获取到,对应的值为(nil)
- 每个hash可以存储232-1个键值对
- hash类型十分贴近对象的数据存储形式,并且可以灵活添加删除对象属性。但hash设计不是为了存储大量对象的,切记不可滥用,更不可以将hash作为对象列表使用
- hgetall操作可以获取全部属性,如果内部fiekd过多,遍历整体数据效率就会很低,有可能成为数据访问瓶颈。
hash类型应用场景购物车
业务场景:电商网站购物车的设计与实现。
解决方案:
例如创建一个购物车:
当前仅仅是将数据存储到redis中,并没有起到加速的所用,因为我们仅仅查询到了用户的id和商品的id,显示的时候显示的用户名和商品的名称,商品信息还需要二次查询数据库。
-
每条购物车中的商品记录保存成两条field
-
field1 专用于保存购买数量
1、命名格式:商品id:nums
2、保存数据:数值 -
field2 专用于保存购物车中显示的信息,包含文字描述,图片地址,所属商家信息等等
1、命名格式:商品id:info
2、保存数据:json
但是出现很多用户都将同一个商品假如购物车,就会出现大量的重复信息,例如商品信息重复:
因此我们可以将商品的信息单独的保存成一个哈希。
创建数据,如果有则不再创建,如果没有则创建
hsetnx key field value
Hash实现抢购,限购发放优惠券,激活码等
解决方案
- 以商家id作为key
- 将参与抢购的商品id作为field
- 将参与抢购的商品数量作为对应的value
- 抢购时使用降至的方式控制产品数量
list
数据存储需求:存储多个数据,并对数据进入存储空间的顺序进行区分
需要的存储数据:一个存储空间保存多个数据,且通过数据可以体现进入顺序
list类型:保存多个数据,底层使用双向链表存储结构实现
- 添加/修改数据
lpush key value1 [value2] …
rpush key value1 [value2] …
- 获取数据
lrange key start stop //获取从左数第start到stop个元素,从0开始
lindex key index //查询第i个元素
llen key //list的长度
- 获取并移除数据
lpop key //获取并删除左边第一个元素
rpop key //获取并删除右边第一个元素
list 类型数组扩展操作
- 规定时间内获取并移除数据
blpop key1 [key2] timeout
brpop key1 [key2] timeout
阻塞式获取,在规定时间内获取这个值,规定时间内如果还没有的时候可以等,直到有值就可以获取到获取超时获取为空。
开两个客户端,一个设置15s内获取list1中的值,此时list1位空一直等待(阻塞),在15秒内另一个客户端存入到list1中数据,此时就被获取到。
业务场景
微信朋友圈点赞,要求按照点赞顺序显示点赞好友信息。
如果取消点赞,移除对应好友信息。
解决方案
- 移除指定数据
lrem key count value //count为移除的数量,value为移除哪个值
list类型数据操作注意事项
- list 中保存的数据都是string类型的,数据总容量式是有限的,最多232-1个元素(4294967295)
- list具有索引的概念,但是操作数据时候通常以队列的形式进行入队出队操作,或以栈的形式进入栈出栈的操作
- 获取全部数据操作结束索引设置为-1
- list 可以对数据进行分页操作,通过第一页的信息来自list,第2页及更多的信息通过数据库的形式加载
list类型应用场景
业务场景-最新消息的展示
- twitter、新浪微博、腾讯微博中个人用于的关注列表需要按照用户的关注顺序进行展示,粉丝列表需要将最近关注的粉丝列在前面
- 新闻、资讯类网站如何将最新的新闻或资讯按照发生的事件顺序展示
- 企业运营过程中,系统将产生出大量的运营数据,如何保障堕胎服务器操作日志的统一顺序输出?
解决方案
- 依赖list的数据具有顺序的特征对信息进行管理
- 使用队列模型解决多路信息汇总合并的问题
- 使用栈模型解决最新消息的问题
Set
- 新的存储需求:存储大量的数据,在查询方面提供更高的效率
- 需要的存储结构:能够保存大量的数据,高效的内部存储机制,便于查询
- set类型:与hash存储结构完全相同,仅存储键,不存储值,并且值式不允许重复的。也就是只有键没有值的hash
Set的基本操作
- 添加数据
sadd key menber1 [member2]
- 获取全部数据
smembers key
- 删除数据
srem key member1 [member2]
- 获取集合数据总量
scard key
- 判断集合中是否包含指定数据
sismember key member
set类型数据的扩展操作
业务场景-随机操作数据
每位用户首次使用进入头条时候会设置3项爱好的内容,但是后期为了增加用户的活跃度、兴趣点,必须让用户对其他信息类别逐渐产生兴趣,增加客户留存度,如何实现?
业务分析
- 系统分析出各个分类的最新或最热点信息条目并组织成set集合
- 随机挑选其中部分信息
- 配合用户关注信息、分类中的热点信息、组织展示的全信息集合
解决方案
- 随机获取集合中指定数量的数据
srandmember key [count]
- 随机获取集合中的某个数据并将该数据移出集合
spop key
redis应用于随机推荐类信息检索,例如热点歌单推荐,热点新闻推荐,热点旅游线路,应用APP推荐,大V推荐等。
业务场景-共同好友
例如:
解决方案
- 求两个集合的交、并、差集
sinter key1 [key2] //交集
sunion key1 [key2] //并集
sdiff key1 [key2] //差集(key1有但是key2没有的)
- 求两个集合的交、并、差集并存储到指定集合中
sinterstore destination key1 [key2]
sunionstore destination key1 [key2]
sdiffstore destination key1 [key2]
- 将指定数据从原始集合移动到目标集合中
smove source destination member
redis应用于同类信息的关联搜索,二度关联搜索,深度关联搜索
- 显示共同关注(一度)
- 显示共同好友(一度)
- 由用户A出发,获取到好友用户B的好友信息列表(一度)
- 由用户A出发,获取到好友用户B的购物清单列表(二度)
- 由用户A出发,获取到好友用户B的游戏充值列表(二度)
Set类型数据操作的注意事项
set类型不允许数据重复,如果添加的数据在set中已经存在,将只保留一份
set虽然与hash的存储结构相同,但是无法启用hash中存储值的空间
业务场景-同类型不重复数据的合并操作
解决方案
依赖set集合数据不重复的特征,依赖set集合hash存储结构特征完成数据过滤与快速查询
- 根据用户id获取用户所有角色
- 根据用户所有角色获取用户所有操作权限放入set集合
- 根据用户所有觉得获取用户所有数据全选放入set集合
两种方法,其中第二种耦合度太高:
set业务场景-访问量统计去重
解决方案
针对不同的统计类型有不同的数据存储方式:
- 利用set集合的数据去重特征,记录各种访问数据
- 建立string类型数据,利用incr统计日访问量(PV)
- 建立set模型,记录不同cookie数量(UV)
- 建立set模型,记录不用IP数量(IP)
set业务场景-黑白名单
解决方案
- 基于经营战略设定问题用户发现、鉴别规则
- 周期性更行满足规则的用户黑名单,加入set集合
- 用户行为信息达到后与黑名单进行比比对,确认行为去向
- 黑名单过滤IP地址:应用于开放游客访问权限的信息源
- 黑名单过滤设备信息:应用于限定访问设备的信息源
- 黑名单过滤用户:应用于基于访问权限的信息源
sorted_set类型
- 新的存储需求:根据排序有利于数据的有效显示,需要提供一种可以根据自身特征进行排序的方式。
- 需要的存储结构:新的存储模型,可以保存可排序的数据。
- sorted_set类型:在set的存储结构基础上添加可排序字段。
score只存储其顺序。
zset类型数据的基本操作
- 添加数据
zadd key score1 member1 [score2 member2]
- 获取全部数据
zrange key start stop [WITHSCORES]//按照从小到大的顺序,加上WITHSCORES,就会带上scores一起显示
zrevrange key start stop [WITHSCORES]//按照从大到小的顺序
- 删除数据
zrem key member [member …]
- 按条件获取数据
//查询scores在某个范围内的值
zrangebyscore key min max [WITHSCORES] [LIMIT]
//查询key某个索引范围内的值
zrevrangebyscore key max min [WITHSCORES]
- 条件删除
zremrangebyrank key start stop
zremrangebyscore key min max
注意:
- min与max用于限定搜索查询的条件
- start与stop用于限定查询范围,作用于索引,表示开始和结束索引
- offset与count用于限定查询范围,作用于查询结果,表示开始位置和数据总量
获取集合数据总量
zcard key //获取总量
zcount key min max //获取某一个范围的总量
- 集合交、并存储操作
zinterstore destination numkeys key [key …] //求和
zunionstore destination numkeys key [key …]
zset 类型数据的扩展操作
业务场景- 建立排序依据
解决方案
- 获取数据对应的索引(排名)
zrank key member //正数第几位
zrevrank key member //倒数第几位
- score 值获取与修改
zscore key member //获取
zincrby key increment member //score递增 increment
sorted_set 类型数据操作的注意事项
- score 保存的数据存储空间是64位
- score保存的数据也可以是一个双精度的double值,基于双精度浮点数的特征,可能会丢失精度,使用时侯要慎重
- sorted_set底层存储还是基于set结构的,因此数据不能重复,如果重复添加相同的数据,score值将被反复覆盖,保留最后一次修改的结果
业务场景-会员短期体验之过期失效
解决方案
- 对于基于时间线限定的任务处理,将处理时间记录为score值,利用排序功能区分处理的先后顺序
- 记录下一个要处理的事件,当对比系统时间发现当然仍后到期后移除redis中的记录,并记录下一个要处理的时间
- 当新任务加入时,判定并更新当前下一个要处理的任务时间
- 为提升zset的性能,通常将任务根据特征存储成若干个zset.例如1小时内,1天内,年度等,操作时逐渐提升,将即将操作的若干个任务纳入到1小时内处理队列中
- time命令获取当前系统时间
数据类型实践案例
按次调用-计数器
如何实现这个每分钟只能调用10次呢?
解决方案
- 设计计数器,记录调用次数,用于控制业务执行次数。以用户id作为key,使用此时作为value
- 在调用前获取次数,判断是否超过限定次数,不超过次数的情况下,每次调用计数+1,业务调用失败,不递增
- 为了计数器设置生命周期为指定周期,例如10次/分钟,自动清空周期内使用次数。
解决方案改良
利用可以存储的最大值是9223372036854775807,超过这个值就会抛出异常的特性。假如一分钟只能访问5次,可以将初始值设置为9223372036854775802,每次访问都加1,访问5次后这个数就会溢出异常。
微信会话
解决方案
- 依赖list的数据具有顺序的特征对消息进行管理,将list结构作为栈使用
对指定与普通会话分别创建独立的list分别管理 - 当某个list中接收到用户消息后,将消息发送方的id从list的一侧加入list(此处设定左侧)
- 多个相同id发出的消息反复入栈会出现问题,在入栈之前无论是否具有当前id对应得消息,先删除对应id
- 推送消息时先推送顶置会话list,再推送普通会话list,推送完成的list清除所有数据
- 消息的数量,也就是微信用户对话数量采用计数器的思想另行记录,伴随list操作同步更新