HDU5800 To My Girlfrend(计数dp)

To My Girlfriend

传送门1
传送门2

Dear Guo

I never forget the moment I met with you.You carefully asked me: “I have a very difficult problem. Can you teach me?”.I replied with a smile, “of course”.”I have n items, their weight was a[i]”,you said,”Let’s define f(i,j,k,l,m) to be the number of the subset of the weight of n items was m in total and has No.i and No.j items without No.k and No.l items.”“And then,” I asked.You said:”I want to know

i=1nj=1nk=1nl=1nm=1sf(i,j,k,l,m)(i,j,k,l are different)

Sincerely yours,
Liao

Input

The first line of input contains an integer T(T15) indicating the number of test cases.
Each case contains 2 integers n,s(4n1000,1s1000) . The next line contains n numbers: a1,a2,,an(1ai1000).

Output

Each case print the only number — the number of her would modulo 109+7 (both Liao and Guo like the number).

Sample Input

2
4 4
1 2 3 4
4 4
1 2 3 4

Sample Output

8
8


题意

给定 n 个数,其中选定若干数,这若干数的权值和为m,且这些数中没有下标为 i,j 的数,有下标为 k,l 的数的集合个数。

分析

定义 dp[i][j][ii][jj] 表示前i个物品,总权值为j,已有ii个必选,jj必不选的方案数。
显然 i<=n,j<=s,0<=ii,jj<=2
当然对于当前一个状态,它有四种转移状态:
1.  选中当前的, 增加权值, 增加必 选个数。
2.  选中当前的, 增加权值,不增加必 选个数。
3. 不选中当前的,不增加权值, 增加必不选个数。
4. 不选中当前的,不增加权值,不增加必不选个数。
f(i,j,k,l,m) 中,因为 i,j 可以互换, l,k 也可以互换,故而最后方案数乘以4即为所求。
参考

CODE
#include<cstdio>
#include<memory.h>
#define mod 1000000007
#define N 1005
#define FOR(i,a,b) for(int i=(a),i##_END_=(b);i<=i##_END_;i++)
int dp[N][N][3][3],a[N];
int main() {
    int T,n,s,tmp;
    int ans;
    scanf("%d",&T);
    while(T--) {
        ans=0;
        scanf("%d%d",&n,&s);
        FOR(i,1,n)scanf("%d",&a[i]);
        memset(dp,0,sizeof dp);
        dp[1][a[1]][0][0]=1;
        dp[1][a[1]][1][0]=1;
        dp[1][0][0][0]=1;
        dp[1][0][0][1]=1;
        FOR(i,2,n)FOR(j,0,s) {
            tmp=j+a[i];
            if(tmp<=s) { //卡常大法好
                dp[i][tmp][0][0]=(dp[i][tmp][0][0]+dp[i-1][j][0][0])%mod;
                dp[i][tmp][1][0]=(dp[i][tmp][1][0]+dp[i-1][j][0][0])%mod;
                dp[i][tmp][1][0]=(dp[i][tmp][1][0]+dp[i-1][j][1][0])%mod;
                dp[i][tmp][2][0]=(dp[i][tmp][2][0]+dp[i-1][j][1][0])%mod;
                dp[i][tmp][2][0]=(dp[i][tmp][2][0]+dp[i-1][j][2][0])%mod;

                dp[i][tmp][0][1]=(dp[i][tmp][0][1]+dp[i-1][j][0][1])%mod;
                dp[i][tmp][1][1]=(dp[i][tmp][1][1]+dp[i-1][j][0][1])%mod;
                dp[i][tmp][1][1]=(dp[i][tmp][1][1]+dp[i-1][j][1][1])%mod;
                dp[i][tmp][2][1]=(dp[i][tmp][2][1]+dp[i-1][j][1][1])%mod;
                dp[i][tmp][2][1]=(dp[i][tmp][2][1]+dp[i-1][j][2][1])%mod;

                dp[i][tmp][0][2]=(dp[i][tmp][0][2]+dp[i-1][j][0][2])%mod;
                dp[i][tmp][1][2]=(dp[i][tmp][1][2]+dp[i-1][j][0][2])%mod;
                dp[i][tmp][1][2]=(dp[i][tmp][1][2]+dp[i-1][j][1][2])%mod;
                dp[i][tmp][2][2]=(dp[i][tmp][2][2]+dp[i-1][j][1][2])%mod;
                dp[i][tmp][2][2]=(dp[i][tmp][2][2]+dp[i-1][j][2][2])%mod;
            }
            dp[i][j][0][0]=(dp[i][j][0][0]+dp[i-1][j][0][0])%mod;
            dp[i][j][0][1]=(dp[i][j][0][1]+dp[i-1][j][0][0])%mod;
            dp[i][j][0][1]=(dp[i][j][0][1]+dp[i-1][j][0][1])%mod;
            dp[i][j][0][2]=(dp[i][j][0][2]+dp[i-1][j][0][1])%mod;
            dp[i][j][0][2]=(dp[i][j][0][2]+dp[i-1][j][0][2])%mod;

            dp[i][j][1][0]=(dp[i][j][1][0]+dp[i-1][j][1][0])%mod;
            dp[i][j][1][1]=(dp[i][j][1][1]+dp[i-1][j][1][0])%mod;
            dp[i][j][1][1]=(dp[i][j][1][1]+dp[i-1][j][1][1])%mod;
            dp[i][j][1][2]=(dp[i][j][1][2]+dp[i-1][j][1][1])%mod;
            dp[i][j][1][2]=(dp[i][j][1][2]+dp[i-1][j][1][2])%mod;

            dp[i][j][2][0]=(dp[i][j][2][0]+dp[i-1][j][2][0])%mod;
            dp[i][j][2][1]=(dp[i][j][2][1]+dp[i-1][j][2][0])%mod;
            dp[i][j][2][1]=(dp[i][j][2][1]+dp[i-1][j][2][1])%mod;
            dp[i][j][2][2]=(dp[i][j][2][2]+dp[i-1][j][2][1])%mod;
            dp[i][j][2][2]=(dp[i][j][2][2]+dp[i-1][j][2][2])%mod;
        }
        FOR(m,1,s)ans=(ans+dp[n][m][2][2])%mod;
        printf("%d\n",(4LL*ans)%mod);
    }
    return 0;
}

当然你不想看卡常的话可以看下面的代码

#include<cstdio>
#include<memory.h>
#define mod 1000000007
#define N 1005
#define FOR(i,a,b) for(int i=(a),i##_END_=(b);i<=i##_END_;i++)
int dp[N][N][3][3],a[N];
int main() {
    int T,n,s,tmp;
    int ans;
    scanf("%d",&T);
    while(T--) {
        ans=0;
        scanf("%d%d",&n,&s);
        FOR(i,1,n)scanf("%d",&a[i]);
        memset(dp,0,sizeof dp);
        dp[1][a[1]][0][0]=1;
        dp[1][a[1]][1][0]=1;
        dp[1][0][0][0]=1;
        dp[1][0][0][1]=1;
        FOR(i,2,n)FOR(j,0,s) {
            tmp=j+a[i];
            if(tmp<=s)FOR(jj,0,2) {
                dp[i][tmp][0][jj]=(dp[i][tmp][0][jj]+dp[i-1][j][0][jj])%mod;
                dp[i][tmp][1][jj]=(dp[i][tmp][1][jj]+dp[i-1][j][0][jj])%mod;
                dp[i][tmp][1][jj]=(dp[i][tmp][1][jj]+dp[i-1][j][1][jj])%mod;
                dp[i][tmp][2][jj]=(dp[i][tmp][2][jj]+dp[i-1][j][1][jj])%mod;
                dp[i][tmp][2][jj]=(dp[i][tmp][2][jj]+dp[i-1][j][2][jj])%mod;
            }
            FOR(ii,0,2) {
                dp[i][j][ii][0]=(dp[i][j][ii][0]+dp[i-1][j][ii][0])%mod;
                dp[i][j][ii][1]=(dp[i][j][ii][1]+dp[i-1][j][ii][0])%mod;
                dp[i][j][ii][1]=(dp[i][j][ii][1]+dp[i-1][j][ii][1])%mod;
                dp[i][j][ii][2]=(dp[i][j][ii][2]+dp[i-1][j][ii][1])%mod;
                dp[i][j][ii][2]=(dp[i][j][ii][2]+dp[i-1][j][ii][2])%mod;
            }
        }
        FOR(m,1,s)ans=(ans+dp[n][m][2][2])%mod;
        printf("%d\n",(4LL*ans)%mod);
    }
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值