SVM支持向量机
原理
最优化求最大间隔
寻找可以区分两个类别并且能使边际(margin)最大的超平面(hyper plane)
定义距离超平面最近的点为支持向量
优缺点
优点
- 可以解决高维问题,即大型特征空间;
- 解决小样本下机器学习问题;
- 能够处理非线性特征的相互作用;
- 无局部极小值问题;(相对于神经网络等算法)
- 无需依赖整个数据;
- 泛化能力比较强;
缺点
- 当观测样本很多时,效率并不是很高;
- 对非线性问题没有通用解决方案,有时候很难找到一个合适的核函数;
- 对于核函数的高维映射解释力不强,尤其是径向基函数;
- 常规SVM只支持二分类; 对缺失数据敏感;
使用场景
回归分析、分类、模式识别