【StableDiffusion教程】高清修复老照片-图生图

修复老照片的意义就不多说了,相信大家都明白,这里直接开讲方法。

1、原理

这个方法需要一个真实模型,以便让修复的照片看起来比较真实,我这里选择:realisticVisionV20,大家有更好的给我推荐哦。

还需用搭配两个特殊设置:

ControlNet
Tile:这是一个ControlNet模型,用于放大和补充细节。

ADetailer:这是一个插件,用于修复人脸,也需要加载对应的模型。

我从网上找了一张比较模糊的照片(如有侵权,请告知替换)。

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
2、实操

打开Stable Diffusion WebUI,进入“图生图”界面。

(1)选择好大模型,填写合适的提示词和反向提示词。

注意提示词需要匹配照片。不会写的同学,可以使用WebUI中的反向推导工具先生成一个,然后再进行修改,我这里贴出这张图的提示词:

提示词:ultra detailed, masterpiece, best quality, an photo of a old man in a hat
and a hat on his heads, with greying temples, (looking at viewer), a character
portrait, mingei,simple background, clean
反向提示词:easy_negative, NSFW, (worst quality:2), (low quality:2), (normal
quality:2), lowres, normal quality, skin spots, acnes, skin blemishes,age
spot, (ugly:1.331),
(duplicate:1.331),(morbid:1.21),
(mutilated:1.21), (tranny:1.331),flower,lines,white point,plant,

(2)基础生成参数设置

图生图这里上传待修复的图片:

缩放模式:裁剪,不改变尺寸的情况下这个没影响,改变尺寸的时候会截取。

采样器:Euler a

采样步数;20

尺寸:768*1064,想要出图的尺寸,一般原图尺寸就可以,生成好了再裁减。

提示词引导系数:7,这是默认值,出图不满意的时候可以调整试试。

重绘强度:这里选择1,以更好的补充细节,可以根据实际情况调整 。

图像生成种子:-1,代表随机种子,建议不要固定,否则每次出来的都一样。

(3)设置ControlNet Unit

在第一个Unit中上传原图;勾选“启用”,否则ControlNet不生效;勾选“Pixel Perfect”,勾选“Allow Preview”。

这里选择Control类型为 Tile,注意预处理器和模型都要对应上,都是包含tile的,一般WebUI会自动选择上,没有自动的需要自己选择;

Control Weight 用来控制Tile的权重;

Starting Control Step 和 Ending Control Step 用来控制ControlNet介入图像生成的步骤。

如果想让SD更自由发挥一下,可以调整下权重和介入步数,这里采用默认值。

(4)修脸插件

对于修复大爷的照片,这里感觉没什么用,如果生成效果不好的话,可以试试它。

(5)最后点击生成,看看效果,还不错!

3、相关下载

真实模型:C站可以下载,不方便访问的可以看到文章末尾即可获得下载地址

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### 解决Stable Diffusion像中的过度曝光或欠曝问题 当遇到由Stable Diffusion成的像存在过度曝光或欠曝的情况时,可以通过调整提示词(prompt)来改善最终效果。由于提示词是决定像风格和特征的关键因素[^2],因此优化这部分输入能够有效提升输出的质量。 #### 修改提示词以控制亮度 为了更好地掌控像的整体明暗度,在编写用于指导模型创建新作品的文字描述时加入特定关键词可以帮助达到目的。例如: - 对于希望减少过亮区域的情形,“dim lighting, soft shadows”这样的表达有助于传达更柔和、低光环境下的视觉感受; - 如果目标是在较暗背景下增加细节可见性,则可尝试使用“bright highlights, clear details”。 这些词语不仅限于此处列举的例子;实际上任何能清晰描绘理想光照条件及其特点的语言都可以作为有效的指令传递给AI系统。 #### 利用负向提示排除不良特性 除了正面定义想要的结果外,还可以利用所谓的“负提示词”,即告诉程序哪些元素不应该出现在成品之中。针对本案例而言,如果发现某些类型的高光或者阴影经常导致不满意的地方,就可以把这些模式标记出来并设置成不应存在的部分。比如指定`no overexposed areas`, `avoid harsh shadows`等作为负面指示,从而进一步精细化调控画面质感[^4]。 #### 微调其他参数辅助校正 虽然重点在于改进提示语句本身,但也不应忽视对诸如迭代次数(cycles)、尺度因子(scale factor)以及其他可能影响渲染过程设定项做适当调节的可能性。合理配置上述选项同样有利于获得更加平衡合理的光影表现形式[^3]。 ```python # Python伪代码示例展示如何设置Prompts及Negative Prompts from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('model_name') positive_prompt = "a scene with dim lighting and soft shadows" negative_prompt = "overexposed areas" image = pipeline( prompt=positive_prompt, negative_prompt=negative_prompt).images[0] image.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值