1.回顾一下,w与αi,xi,yi的关系式为:
w = ∑ αi*yi*xi ,其中i = 1,2,3,...,N
我们初始化的α是一个全为0的向量,即α1=α2=α3=...=αN=0,w的值即为0.
我们进行SMO算法时,每轮挑选出两个变量αi,固定其他的α值,也就是说,那些从来没有被挑选出来过的α,值始终为0,而根据前面所学,支持向量对应的αi是一定满足 0<αi<=C的.
有了这个认识之后,为什么不用全集呢,因为不是支持向量的样本点,对应的αi值为0啊,加起来也没有意义,对w产生不了影响,只有支持向量对应的点 (xi,yi)与对应的αi相乘,产生的值才对w有影响啊。
从这里也能理解,为什么李航书中,认为支持向量不仅仅是处于间隔边界上的点,还包括那些处于间隔边界和分类超平面之间、分类超平面之上、分类超平面错误的一侧处的点了,因为后面所说的那些点,对应的αi为C,对w的计算可以起到影响作用,换句话说,就是能对w起到影响作用的点,都属于支持向量!
2.你好,α=Cα=C,这样的样本也是支持向量,只是不在间隔边界上而已。参见我本系列第二篇第4节的内容和第4节的图,图中的红字。
3.你好,计算求解b1new时,不需要用E1来表示,用4.3节第二个公式可以求出来,后续用E1表示,是为了求出最终的bnew, 并求出Ei。
你好,每个样本都有一个E,上面的部分只能求出E1,即我们选择αα对应的一个样本的E,其他样本的E不能用这个公式来求的。其余的E需要在拿到bnew后才能求。
4.
刘老师您好,想想请教你个问题。既然SVM 可以直接用次梯度下降去优化HINGE LOSS,为什么要把原问题转换为对偶问题用SMO 去优化。最后转换为对偶形式以后,也是一个凸优化问题。为什么不能用梯度下降或者牛顿法等去优化,是不是因为有不等式约束?谢谢。
你好,对的,因为有不等式约束,所以不方便用梯度下降或者牛顿法直接去迭代优化求解。因为有可能你负梯度的方向不符合不等式的约束。此时不好选择其他的方向。