[Codeforces Round #369 (Div. 2)D. Directed Roads]Tarjan强连通分量+组合计数

原创 2016年08月31日 13:33:43

[Codeforces Round #369 (Div. 2)D. Directed Roads]Tarjan强连通分量+组合计数

题目链接[Codeforces Round #369 (Div. 2)D. Directed Roads]
题意描述:给定N个点,N条边的有向图。 (2N2105)。可以选择某些顶点,构成一个顶点集合,然后将连接顶点集合中的所有有向边进行翻转操作。在满足翻转之后的有向图不包含环的情况下,求翻转之后的图有多少种。答案 对109+7取模。
解题思路:首先对原有向图求强连通分量,求出强连通分量的个数scc,以及每个强连通分量大小(即包含顶点的个数),令numi表示第i个强连通分量的大小(1iscc)。并求出连接各个强连通分量之间的有向边的条数t
那么答案

ans=2ti=1scc(2numi2)

为什么呢?
首先我们对第i个强连通分量进行分析。对于一个大小为numi的强连通分量。改变一些边之后让他不再构成强连通分量的方案数是2numi2,减2是因为所有的总方案数 减去 构成强连通图的方案数。
将所有的强连通图变成不强连通之后,然后我们考虑原图中连接各个强连通分量的边,边数是t,显然,这些边的方向可以任意变化。那么方案数就是2t
所以,答案就是将上面的式子进行累乘。
Tarjan算法直接套kuangbin的模板了~~。

#include <bits/stdc++.h>
using namespace std;

#define FIN             freopen("input.txt","r",stdin)
#define FOUT            freopen("output.txt","w",stdout)
#define fst             first
#define snd             second

typedef __int64 LL;
//typedef long long LL;
typedef pair<int, int> PII;

const int MAXN = 2e5 + 5;
const LL MOD = 1e9 + 7;

int N, M, K;
struct Edge {
    int v, next;
    Edge() {}
    Edge(int v, int next) : v(v), next(next) {}
} edges[MAXN];
int head[MAXN], ESZ;
int Low[MAXN], DFN[MAXN], Stack[MAXN], Belong[MAXN];
int Index, top;
int scc;
bool Instack[MAXN];
int num[MAXN];
int par[MAXN], blocks;

void init() {
    ESZ = 0;
    blocks = N;
    memset(head, -1, sizeof(head));
    memset(par, -1, sizeof(par));
}
void add_edge(int u, int v)  {
    edges[ESZ] = Edge(v, head[u]);
    head[u] = ESZ ++;
}
int Find(int x) {
    return -1 == par[x] ? x : (par[x] = Find(par[x]));
}
void Union(int x, int y) {
    x = Find(x),  y = Find(y);
    if(x != y) par[y] = x, blocks --;
}
LL quick_pow(LL a, LL b, LL mod) {
    LL ret = 1;
    while(b) {
        if(b & 1) ret = ret * a % mod;
        a  = a * a % mod;
        b >>= 1;
    }
    return ret;
}
void Tarjan(int u) {
    int v;
    Low[u] = DFN[u] = ++Index;
    Stack[top++] = u;
    Instack[u] = true;
    for(int i = head[u]; ~i; i = edges[i].next) {
        v = edges[i].v;
        if( !DFN[v] ) {
            Tarjan(v);
            if( Low[u] > Low[v] )Low[u] = Low[v];
        } else if(Instack[v] && Low[u] > DFN[v])
            Low[u] = DFN[v];
    }
    if(Low[u] == DFN[u]) {
        scc++;
        do {
            v = Stack[--top];
            Instack[v] = false;
            Belong[v] = scc;
            num[scc]++;
        } while(v != u);
    }
}
void solve() {
    memset(DFN, 0, sizeof(DFN));
    memset(Instack, false, sizeof(Instack));
    memset(num, 0, sizeof(num));
    Index = scc = top = 0;
    for(int i = 1; i <= N; i++)
        if(!DFN[i]) Tarjan(i);
    LL ans = 1;
    for(int i = 1; i <= scc; i++) {
        LL x = (quick_pow(2LL, (LL)num[i],  MOD) -  2 +  MOD) % MOD;
        x = max(x, 1LL);
        ans = x * ans % MOD;
    }
    ans = ans * quick_pow(2LL, (LL)scc - blocks, MOD)  % MOD;
    printf("%I64d\n", ans);
}
int main() {
#ifndef ONLINE_JUDGE
    FIN;
#endif // ONLINE_JUDGE
    int u, v;
    while(~scanf("%d", &N)) {
        init();
        for (u = 1; u <= N; u++) {
            scanf("%d", &v);
            add_edge(u, v);
            Union(u, v);
        }
        solve();
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

[Codeforces Round #369 (Div. 2)D. Directed Roads]Tarjan强连通分量+组合计数

[Codeforces Round #369 (Div. 2)D. Directed Roads]Tarjan强连通分量题目链接:[Codeforces Round #369 (Div. 2)D. D...

Codeforces Round #369 (Div. 2) D. Directed Roads

题目链接题意:给你一个n个点,n条有向边的图,你可以使任意条边反向,但是每条边只能反向一次,请求出使图不存在环的所有方案数量仔细思考我们发现,对于一个点数为x的环,除去全部不反向和全部反向两种情况,其...
  • naipp
  • naipp
  • 2016-08-30 23:28
  • 85

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

Codeforces Round #369 (Div. 2) D. Directed Roads (dfs+组合数学 图论)

传送门:D. Directed Roads 描述: D. Directed Roads time limit per test 2 seconds memory li...

【Codeforces Round #369 (Div. 2)】Codeforces 711D Directed Roads

问题转化+dfs找环+快速幂

有向图找环——Directed Roads ( Codeforces Round #369 (Div. 2) D )

题目链接: http://www.codeforces.com/contest/711/problem/D 分析: 给出n个点,每个点的出度为1,然后给出每个点指向的那个点。求有多少种翻转的方法(...
  • FeBr2
  • FeBr2
  • 2016-09-01 21:43
  • 146

Codeforces Round #369 (Div. 2) -- D. Directed Roads (DFS找环)

大体题意: 给你一个有向图,可能会有环,你的操作是反向一条路,求得使得图中没有环所有方案数? 思路: 假如图中没有环的话,有n条边,答案就是2^n 如果有个m边的环,间接法考虑,总方案是2^m...

CodeForces 369 div2 D Directed Roads 图论 数论

D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes ...

Codeforces Round #369 (Div. 2) A~D

A. Bus to Udayland time limit per test 2 seconds memory limit per test 256 megabytes input sta...

Codeforces Round #369 (Div. 2) A~D

前言:这场又蹦了。。。还是老老实实补题吧。 A:水题就不说了#include #define rep(i,a,n) for (int i=a;i>n){ int ans=0;

codeforces Round#369 div2-D tDirected Roads

题解:题目给出的图不会环套环(环套环的话,至少有一个点要有两个出度,但题目是每个点一个出度),所有直接求强连通分量,贡献分两种情况: 1.形成环的强连通:2^n-2(本身和所有边反向不合法,其余都合法...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)