Fighting!

欲戴皇冠,必承其重!

[Codeforces Round #369 (Div. 2)D. Directed Roads]Tarjan强连通分量+组合计数

[Codeforces Round #369 (Div. 2)D. Directed Roads]Tarjan强连通分量+组合计数

题目链接[Codeforces Round #369 (Div. 2)D. Directed Roads]
题意描述:给定N个点,N条边的有向图。 (2N2105)。可以选择某些顶点,构成一个顶点集合,然后将连接顶点集合中的所有有向边进行翻转操作。在满足翻转之后的有向图不包含环的情况下,求翻转之后的图有多少种。答案 对109+7取模。
解题思路:首先对原有向图求强连通分量,求出强连通分量的个数scc,以及每个强连通分量大小(即包含顶点的个数),令numi表示第i个强连通分量的大小(1iscc)。并求出连接各个强连通分量之间的有向边的条数t
那么答案

ans=2ti=1scc(2numi2)

为什么呢?
首先我们对第i个强连通分量进行分析。对于一个大小为numi的强连通分量。改变一些边之后让他不再构成强连通分量的方案数是2numi2,减2是因为所有的总方案数 减去 构成强连通图的方案数。
将所有的强连通图变成不强连通之后,然后我们考虑原图中连接各个强连通分量的边,边数是t,显然,这些边的方向可以任意变化。那么方案数就是2t
所以,答案就是将上面的式子进行累乘。
Tarjan算法直接套kuangbin的模板了~~。

#include <bits/stdc++.h>
using namespace std;

#define FIN             freopen("input.txt","r",stdin)
#define FOUT            freopen("output.txt","w",stdout)
#define fst             first
#define snd             second

typedef __int64 LL;
//typedef long long LL;
typedef pair<int, int> PII;

const int MAXN = 2e5 + 5;
const LL MOD = 1e9 + 7;

int N, M, K;
struct Edge {
    int v, next;
    Edge() {}
    Edge(int v, int next) : v(v), next(next) {}
} edges[MAXN];
int head[MAXN], ESZ;
int Low[MAXN], DFN[MAXN], Stack[MAXN], Belong[MAXN];
int Index, top;
int scc;
bool Instack[MAXN];
int num[MAXN];
int par[MAXN], blocks;

void init() {
    ESZ = 0;
    blocks = N;
    memset(head, -1, sizeof(head));
    memset(par, -1, sizeof(par));
}
void add_edge(int u, int v)  {
    edges[ESZ] = Edge(v, head[u]);
    head[u] = ESZ ++;
}
int Find(int x) {
    return -1 == par[x] ? x : (par[x] = Find(par[x]));
}
void Union(int x, int y) {
    x = Find(x),  y = Find(y);
    if(x != y) par[y] = x, blocks --;
}
LL quick_pow(LL a, LL b, LL mod) {
    LL ret = 1;
    while(b) {
        if(b & 1) ret = ret * a % mod;
        a  = a * a % mod;
        b >>= 1;
    }
    return ret;
}
void Tarjan(int u) {
    int v;
    Low[u] = DFN[u] = ++Index;
    Stack[top++] = u;
    Instack[u] = true;
    for(int i = head[u]; ~i; i = edges[i].next) {
        v = edges[i].v;
        if( !DFN[v] ) {
            Tarjan(v);
            if( Low[u] > Low[v] )Low[u] = Low[v];
        } else if(Instack[v] && Low[u] > DFN[v])
            Low[u] = DFN[v];
    }
    if(Low[u] == DFN[u]) {
        scc++;
        do {
            v = Stack[--top];
            Instack[v] = false;
            Belong[v] = scc;
            num[scc]++;
        } while(v != u);
    }
}
void solve() {
    memset(DFN, 0, sizeof(DFN));
    memset(Instack, false, sizeof(Instack));
    memset(num, 0, sizeof(num));
    Index = scc = top = 0;
    for(int i = 1; i <= N; i++)
        if(!DFN[i]) Tarjan(i);
    LL ans = 1;
    for(int i = 1; i <= scc; i++) {
        LL x = (quick_pow(2LL, (LL)num[i],  MOD) -  2 +  MOD) % MOD;
        x = max(x, 1LL);
        ans = x * ans % MOD;
    }
    ans = ans * quick_pow(2LL, (LL)scc - blocks, MOD)  % MOD;
    printf("%I64d\n", ans);
}
int main() {
#ifndef ONLINE_JUDGE
    FIN;
#endif // ONLINE_JUDGE
    int u, v;
    while(~scanf("%d", &N)) {
        init();
        for (u = 1; u <= N; u++) {
            scanf("%d", &v);
            add_edge(u, v);
            Union(u, v);
        }
        solve();
    }
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ACMore_Xiong/article/details/52384082
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭