1.引言
该知识点中,我们首先介绍生成对抗网络GAN的主要模型架构——生成器和鉴别器。其次,我们介绍GAN的损失函数以及相关的训练过程。
2.生成对抗网络模型架构
GAN是一种生成对抗学习方式的深度学习神经网络框架,由Ian J. Goodfellow于2014年首次推出。可以看得出来,GAN存在时间已经很“久远”了,但GAN仍能经久不衰的被人研究和应用也与它的生成对抗学习方式和模型有效性密不可分。
与传统的深度学习神经网络不同,GAN包含两个神经网络:生成器和判别器。生成器的作用是生成与真实数据相似的假数据,而判别器则负责对真实数据和假数据进行分类。在生成器和判别器之间进行博弈,使得生成器生成的假数据与真实数据越来越难以区分,从而实现生成真实数据的目的。与传统的监督式学习不同,GAN是一种无监督学习方法,可以从数据中学习出数据的分布,生成与真实数据相似的假数据。

2.优化函数和损失函数
GAN的优化目标函数是通过最小化生成器和判别器之间的JS散度来使得生成器生成的样本更加真实。具体地,假设我们的生成器是G,判别器是D,输入噪声z,真实数据x,则目标函数(即Optimization函数)可以表示为:
minGmaxDV(D,G)=Ex∼Pdata(x)[logD(x)]+Ez∼Pz(z)[log(1−D(G(z)))]min_G max_D V(D,G) = E_{
{x}\sim{P_{data}(x)}}[log D(x)] + E_{
{z}\sim{P_z(z)}}[log(1 - D(G(z)))]minGmaxDV(D,G

本文介绍了生成对抗网络的基本概念,包括模型架构、优化函数和损失函数,同时讨论了GAN面临的挑战,如模式崩溃、训练不稳定和超参数敏感性,以及相应的解决方案。未来,GAN技术有望通过持续改进克服问题,推动其在更多领域的应用。
最低0.47元/天 解锁文章
1324

被折叠的 条评论
为什么被折叠?



