在Faster R-CNN 中DEMO 的CPU(i5)和GPU(GTX1060 )时间对比

原创 2016年08月31日 10:27:04

软硬件环境:

Ubuntu 14.04 64bit
NVIDIA GeForce GTX 1060 6GB
Intel® Core™ i5-6500 CPU @ 3.20GHz × 4
8GB memory
CUDA 8.0
cuDNN 5.0

zf net使用CPU的时间:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000456.jpg
Detection took 3.800s for 300 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000542.jpg
Detection took 3.013s for 135 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001150.jpg
Detection took 3.423s for 231 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001763.jpg
Detection took 3.215s for 200 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/004545.jpg
Detection took 3.788s for 300 object proposals

zf net使用GPU的时间:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000456.jpg
Detection took 0.069s for 300 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000542.jpg
Detection took 0.051s for 135 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001150.jpg
Detection took 0.058s for 231 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001763.jpg
Detection took 0.057s for 200 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/004545.jpg
Detection took 0.064s for 300 object proposals

VGG16 net 使用CPU的时间

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000456.jpg
Detection took 17.795s for 300 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000542.jpg
Detection took 15.609s for 161 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001150.jpg
Detection took 16.014s for 194 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001763.jpg
Detection took 15.853s for 196 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/004545.jpg
Detection took 16.921s for 300 object proposals

VGG16 net 使用GPU的时间

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000456.jpg
Detection took 0.162s for 300 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000542.jpg
Detection took 0.132s for 161 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001150.jpg
Detection took 0.148s for 194 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001763.jpg
Detection took 0.145s for 196 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/004545.jpg
Detection took 0.162s for 300 object proposals

结论:

VGG16 差距达到100倍!

Note: CPU只用了一个核心。

Matlab r2014a调用C程序

1、首先检验Matlab r2014a是否成功安装了mcc 检验方法:在matlab命令行(command Window)内输入!mcc。需要等待一会,才能显示出结果。 若显示:MCC Invok...

深度残差网络 ResNet

作为 CVPR2016 的 best paper,何凯明的文章【1】针对深层网络梯度弥散导致的SGD优化难题,提出了 residual(残差)结构,很好的解决了模型退化问题,在50层、101层、152...
  • zizi7
  • zizi7
  • 2017年08月10日 15:05
  • 771

Faster R-CNN WINDOWS CPU环境搭建(详细版)

操作系统: bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/tools$ cat /etc/issue Ubuntu 14.04.2 LTS ...

Faster R-CNN安装笔记,只用CPU

官网下载 faster RCNN, https://github.com/rbgirshick/py-faster-rcnn 按教程操作,装pythonjie...

Faster R-CNN安装笔记,只用CPU

下载代码和数据 git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git 下载demo模型数据 [root@l...
  • zouroot
  • zouroot
  • 2017年02月11日 21:08
  • 353

目标检测 Faster R-CNN运行及实时性DEMO测试

faster-rcnn:Fast Region-based Convolutional Neural Networks基于区域的卷积神经网络http://blog.csdn.net/column/de...

cuda8+cuDNN Faster R-CNN安装塈运行demo

安装cudacuda8安装参见网上教程安装cudnnCaffe目前的代码貌似不支持cudnn5,如果安装cudnn5,在编译caffe时会报错: error: argument of type “...
  • 10km
  • 10km
  • 2017年03月14日 16:23
  • 1482

Faster-R-CNN(Python).1:从配置到demo

本文主要讲解Faster-R-CNN(Python)配置过程中遇到的问题。

Faster R-CNN安装笔记,只用CPU

转自:http://blog.sina.com.cn/s/blog_679f93560102wpyf.html 下载代码和数据 git clone --recursive https://...

Ubuntu14.04下配置测试Faster R-CNN+Caffe(Matlab+CPU)目标检测

Faster R-CNN是当前目标检测领域内性能最好的算法之一,它将RPN(Region Proposal Network)网络和Fast R-CNN网络结合到了一起,实现了一个端到端的目标检测框架。...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:在Faster R-CNN 中DEMO 的CPU(i5)和GPU(GTX1060 )时间对比
举报原因:
原因补充:

(最多只允许输入30个字)