在Faster R-CNN 中DEMO 的CPU(i5)和GPU(GTX1060 )时间对比

原创 2016年08月31日 10:27:04

软硬件环境:

Ubuntu 14.04 64bit
NVIDIA GeForce GTX 1060 6GB
Intel® Core™ i5-6500 CPU @ 3.20GHz × 4
8GB memory
CUDA 8.0
cuDNN 5.0

zf net使用CPU的时间:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000456.jpg
Detection took 3.800s for 300 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000542.jpg
Detection took 3.013s for 135 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001150.jpg
Detection took 3.423s for 231 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001763.jpg
Detection took 3.215s for 200 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/004545.jpg
Detection took 3.788s for 300 object proposals

zf net使用GPU的时间:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000456.jpg
Detection took 0.069s for 300 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000542.jpg
Detection took 0.051s for 135 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001150.jpg
Detection took 0.058s for 231 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001763.jpg
Detection took 0.057s for 200 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/004545.jpg
Detection took 0.064s for 300 object proposals

VGG16 net 使用CPU的时间

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000456.jpg
Detection took 17.795s for 300 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000542.jpg
Detection took 15.609s for 161 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001150.jpg
Detection took 16.014s for 194 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001763.jpg
Detection took 15.853s for 196 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/004545.jpg
Detection took 16.921s for 300 object proposals

VGG16 net 使用GPU的时间

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000456.jpg
Detection took 0.162s for 300 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/000542.jpg
Detection took 0.132s for 161 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001150.jpg
Detection took 0.148s for 194 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/001763.jpg
Detection took 0.145s for 196 object proposals
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Demo for data/demo/004545.jpg
Detection took 0.162s for 300 object proposals

结论:

VGG16 差距达到100倍!

Note: CPU只用了一个核心。

cuDNN兼容性问题造成的caffe/mnist,py-faster-rcnn/demo运行结果错误

问题描述我有两台电脑,一台笔记本GTX965M显卡,台式机是GTX1060显卡 两台电脑上的软件环境都一样:ubuntu16+cuda8.0+cuDNN4,显卡驱动nvidia-378 在笔记本上...
  • 10km
  • 10km
  • 2017年03月16日 13:30
  • 1831

Faster RCNN CPU模式下进行训练

一、首先参照博客http://blog.csdn.net/qq_14975217/article/details/51495844 对py-faster-rcnn内的roi_pooling_laye...
  • wjx2012yt
  • wjx2012yt
  • 2016年08月13日 09:40
  • 7837

Faster R-CNN安装笔记,只用CPU

转自:http://blog.sina.com.cn/s/blog_679f93560102wpyf.html 下载代码和数据 git clone --recursive https://...
  • wuzuyu365
  • wuzuyu365
  • 2016年07月13日 10:11
  • 4659

Faster R-CNN CPU环境搭建(h 参考 成功)

操作系统: bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/tools$ cat /etc/issue Ubuntu 14.04.2 LTS \n ...
  • zhuiqiuk
  • zhuiqiuk
  • 2017年01月03日 20:13
  • 1045

ubuntu16.04+caffe安装和 py-faster-rcnn的CPU安装

第一部分:ubuntu16.04+caffe安装 第二部分:py-faster-rcnn的CPU安装
  • zyb19931130
  • zyb19931130
  • 2016年12月23日 18:52
  • 4486

py-faster-rcnn + cpu安装及训练自己的数据集

本文安装python版本的faster-rcnn项目。 matlab版本请移步:https://github.com/ShaoqingRen/faster_rcnn python版本项目主页:ht...
  • zhang_shuai12
  • zhang_shuai12
  • 2016年08月23日 23:14
  • 10299

faster-rcnn cpu实现

py-faster-rcnn训练时的cpu实现
  • qq_14975217
  • qq_14975217
  • 2016年05月25日 09:30
  • 5814

Ubuntu下运行Faster-Rcnn

Ubuntu下运行Faster-RcnnFaster-Rcnn 介绍前几天Shaoqing Ren放出了Faster-Rcnn的代码,可以在他的Github上下载得到,上面也有详细的配置说明。 我下...
  • qq_30040223
  • qq_30040223
  • 2015年09月16日 11:56
  • 16743

py-faster-rcnn+CPU训练自己的数据集(二)

感谢csdn各位大神博主 保存自用~~ 原文地址:http://blog.csdn.net/wjx2012yt/article/details/52197698 一、首先参照博客http://...
  • gaohuazhao
  • gaohuazhao
  • 2017年03月08日 13:25
  • 2089

【深度学习】用CPU运行faster-RCNN 的官方demo(基于ubuntu16.04系统)

此篇文章用来记录faster-rcnn在CPU下运行成功的详细步骤,一般来说官方给的教程都是ubuntu+caffe+CUDA+cuDNN,基于GPU速度快于CPU,如果你不是显卡有问题或者配置出问题...
  • sinat_17196995
  • sinat_17196995
  • 2016年11月30日 16:52
  • 2199
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:在Faster R-CNN 中DEMO 的CPU(i5)和GPU(GTX1060 )时间对比
举报原因:
原因补充:

(最多只允许输入30个字)