线性分类器之Fisher线性判别

Fisher线性判别是模式识别中的一种方法,它寻找最佳的投影面,使得样本在投影后更容易分类。该准则通过最大化类间距离与类内距离的比值来确定线性决策面,避免了复杂概率计算,适用于高维特征空间和有限样本的情况。文章介绍了Fisher准则的基本概念、离散度矩阵以及如何求解最优投影方向和决策面。
摘要由CSDN通过智能技术生成

在前文《贝叶斯决策理论》中已经提到,很多情况下,准确地估计概率密度模型并非易事,在特征空间维数较高和样本数量较少的情况下尤为如此。
实际上,模式识别的目的是在特征空间中设法找到两类(或多类)的分类面,估计概率密度函数并不是我们的目的。
前文已经提到,正态分布情况下,贝叶斯决策的最优分类面是线性的或者是二次函数形式的,本文则着重讨论线性情况下的一类判别准则——Fisher判别准则。

为了避免陷入复杂的概率的计算,我们直接估计判别函数式中的参数(因为我们已经知道判别函数式是线性的)。

首先我们来回顾一下线性判别函数的基本概念:
表达形式:

g(x)=ωTx+ω0

其中, x d 维特征向量; ω 称为权向量,决定分类面的方向; ω0 是个常数,称为阈权值。
x=[x1,x2,...,xd]T,ω=[ω1,ω2,...,ωd]T

关于 ω ω0 的作用,大家可以考虑一下二维空间,则其分别对应于斜率和截距,事实上,高维空间亦是如此。

对于两类问题的决策规则:
g(x)=g1(x)g2(x) (分别为第一类和第二类的判别函数,具体定义见前文),则

g(x)>0,xω1

g(x)<0,xω2

g(x)=0,x

可以看出,方程 g(x)=0 定义了一个决策面,它把归类于
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值