数学建模part (4):综合评价

🀄综合评价

综合评价基本要素:

  • 评价对象:系统

  • 评价指标✅:不同侧面刻画系统所具有的某种特征的度量

    • 评价指标向量: x = [ x 1 , x 2 , … , x n ] x=[x_1,x_2,\dots,x_n] x=[x1,x2,,xn]
    • 一个对象对应一个 x x x,包含了n个评价指标的得分
    • 评价指标:系统,独立,科学,可测,可比
  • 权重系数✅:不同指标之间的重要性不同,分配以不同的权重 w j ≥ 0 , ∑ j = 1 m w j = 1 w_j\ge0,\mathop{\sum}\limits_{j=1}^mw_j=1 wj0,j=1mwj=1

  • 评价模型✅:建立数学模型将评价指标转化为综合评价值 f ( x , w ) f(x,w) f(x,w)

    • TOPSIS 理想解法📌
    • 层次分析法📌
    • 数据包络法📌
    • 秩和比评价法📌
    • 灰色关联分析📌
    • 模糊综合评价 详见模糊数学
    • 主成分分析法 详见多元分析
  • 评价者

评价指标的筛选

筛选指标简化评价体系

筛选方法:

  • 专家调研法(Delphi法):集中专家建议筛选指标

  • 最小均方差法(变异系数法):

    • 不同指标内,数据的波动越大,包含的信息越多,对评价结果的影响越大

    • 用样本数据的均方差刻画数据波动,找到各指标中均方差趋近于0的将之剔除

      μ j = 1 n ∑ j = 1 n a i j , s j = 1 n ∑ i = 1 n ( a i j − μ j ) 2 , j = 1 , 2 , … , m \mu_j=\frac{1}{n}\mathop{\sum}\limits_{j=1}^na_{ij},s_j=\sqrt{\frac{1}{n}\mathop{\sum}\limits_{i=1}^n(a_{ij}-\mu_j)^2},j=1,2,\dots,m μj=n1j=1naij,sj=n1i=1n(aijμj)2 ,j=1,2,,m m m m个评价指标

    • matlab:

      std(X,0,1)%1 求列,2求行
      
    • python:

      import numpy as np
      X.np.std()
      
  • 极大极小离差法:

    • 同样是根据指标数据的波动来筛选指标,只是这里是用极差来刻画

      d j d_j dj即为样本的极差,求出样本的最小离差: d j 0 = m i n 1 ≤ j ≤ m { d j } d_{j_0}=\mathop{min}\limits_{1\le j\le m}\{d_j\} dj0=1jmmin{dj} ,若 d j 0 d_{j_0} dj0趋近于0,则将其剔除
      d j = m a x 1 ≤ i < k ≤ n { ∣ a i j − a k j ∣ } , j = 1 , 2 , … , m d_j=\mathop{max}\limits_{1\le i<k\le n}\{|a_{ij}-a_{kj}|\},j=1,2,\dots,m dj=1i<knmax{aijakj},j=1,2,,m

  • 条件广义方差法🧠 根据指标之间相关性进行筛选

  • 极大不相关法🧠

评价指标选取方法研究 - MBA智库文档 (mbalib.com)

指标权重的确定方法

  • 熵值法(客观):根据指标内部信息的混乱程度
  • 变异系数法有时也可以用于确定权重(当前指标不可剔除时)
  • 层次分析法(主观)

熵值法🔥

  • 熵:在信息论中☞信息不确定性的一种度量

  • 信息量越大,熵值越小(不确定性越小),信息的效用值越大,反之熵值越大,信息的效用值越小


  • 信息量的描述:

    假设事件 A A A发生的概率为 P P P,则事件 A A A不发生的概率为 1 − P 1-P 1P

    若事件的某种可能性的概率更大,则说明该事件的确定性越高,所以该事件的信息量越少

    数学刻画信息量: ln ⁡ ( 1 P i ) \ln(\frac{1}{P_i}) ln(Pi1) :称为事件i 的信息量

    • 事件A的样本空间由 ( A , A ‾ ) (A,\overline{A}) (A,A)(P,1-P)组成

    • 概率只有当概率P,和1-P 趋于一致的时候,事件A的正反事件变得模棱两可,事件的不确定性越高,事件的信息量越大 ,即 ∣ 1 − P ∣ → 1 2 |1-P|\rightarrow \frac{1}{2} ∣1P21

    • 而当 P → 0 P\rightarrow0 P0 时,某一方向逐渐成为确定事件,事件的信息量越少

    • 推广到多元(完备事件组):

      • 事件A的样本空间(P1,P2,…Pn),只有在 P n = 1 n P_n=\frac{1}{n} Pn=n1 时,事件A的信息量越大
      • A事件信息量的计算公式: ∑ i = 1 n P i ln ⁡ ( 1 P i ) \sum_{i=1}^n P_i\ln(\frac{1}{P_i}) i=1nPiln(Pi1)

  • 计算步骤:

    1. 计算第 j j j 项指标下第 i i i个评价对象的特征比重(每列的元素/该列元素之和)类似于概率

      假设 b i j > 0 b_{ij}>0 bij>0
      p i j = b i j ∑ i = 1 n b i j    ( j = 1 , 2 , … , m ) p_{ij}=\frac{b_{ij}}{\mathop{\sum}\limits_{i=1}^nb_{ij}}~~(j=1,2,\dots,m) pij=i=1nbijbij  (j=1,2,,m)

    2. 计算第 j j j项指标的熵值:
      e j = − 1 ln ⁡ n ∑ i = 1 n p i j ln ⁡ ( p i j ) e_j=-\frac{1}{\ln n}\sum_{i=1}^np_{ij}\ln(p_{ij}) ej=lnn1i=1npijln(pij)

      • e j e_j ej即为熵, ∑ i = 1 n p i j ln ⁡ ( 1 p i j ) \sum_{i=1}^n p_{ij}\ln(\frac{1}{p_{ij}}) i=1npijln(pij1) ,当数据的分布越不均匀时(离散化程度越高),熵值越少(某部分值所占的比重过高,或过低)
    3. 计算 j j j指标的差异系数
      g j = 1 − e j ,     ( j = 1 , 2 , … , m ) g_j=1-e_j,~~~(j=1,2,\dots,m) gj=1ej,   (j=1,2,,m)

      • 所以差异值越大, e j e_j ej 越小,信息量越大,该指标的影响越大
    4. 确定权重系数(归一化):
      w j = g j ∑ k = 1 m g k w_j=\frac{g_j}{\mathop{\sum}\limits_{k=1}^mg_k} wj=k=1mgkgj
      由此确定了各个指标的权重

    5. 补充:可以直接以权重和数据矩阵相乘进行综合评价

参考:熵?信息熵??熵值法???是时候一次性解释清楚了 - 知乎 (zhihu.com)

评价指标预处理

指标类型:

  • 定性:性质等级之分
  • 定量:数值之分

指标变化对评价结果的影响类型:

  1. 极小型指标(成本型):越小越好(生产成本,付出的时间…)
  2. 极大型指标(效益型):越大越好
  3. 居中型指标:越靠近居中值越好
  4. 区间型指标:取值在某个区间内最好

正向化处理:

  • 极小型–》极大型:

    倒数变换:
    x j ’ = 1 x j x_j^{’}=\frac{1}{x_j} xj=xj1
    平移变换:
    x j ′ − M j − x j , M j = m a x 1 ≤ i ≤ n { a i j } x_j'-M_j-x_j,M_j=\mathop{max}\limits_{1\le i\le n}\{a_{ij}\} xjMjxj,Mj=1inmax{aij}

  • 居中型–》极大型:
    x j ′ = { 2 ( x j − m j ) M j − m j , m j ≤ x j ≤ M j + m j 2 2 ( M j − x j ) M j − m j , M j + m j 2 < x j ≤ M j x'_j=\left\{ \begin{aligned} &\frac{2(x_j-m_j)}{M_j-m_j},m_j\le x_j\le \frac{M_j+m_j}{2}\\ &\frac{2(M_j-x_j)}{M_j-m_j},\frac{M_j+m_j}{2}< x_j\le M_j\\ \end{aligned} \right. xj= Mjmj2(xjmj),mjxj2Mj+mjMjmj2(Mjxj),2Mj+mj<xjMj

    • m j , M j m_j,M_j mjMj视作线段的两个端点,

    • m j ≤ x j ≤ M j + m j 2 m_j\le x_j\le \frac{M_j+m_j}{2} mjxj2Mj+mj时, ( x j − m j ) M j − m j 2 \frac{(x_j-m_j)}{\frac{M_j-m_j}{2}} 2Mjmj(xjmj) 的分子小于分母(坐标点到原点的距离<线段的一半),所以

      2 ( x j − m j ) M j − m j < 1 \frac{2(x_j-m_j)}{M_j-m_j}<1 Mjmj2(xjmj)<1 ,而当 x j = M j + m j 2 x_j=\frac{M_j+m_j}{2} xj=2Mj+mj时, x j ′ = 1 x'_j=1 xj=1 ,所以越居中值越大

    • M j + m j 2 < x j ≤ M j \frac{M_j+m_j}{2}< x_j\le M_j 2Mj+mj<xjMj时同理

  • 区间型–》极大型:

    假设区间型指标 x j ∈ [ b j ( 1 ) , b j ( 2 ) ] x_j\in[b_j^{(1)},b_j^{(2)}] xj[bj(1),bj(2)]时最好,该指标距离区间越远越差

    取最大值 M M M,最小值 m m m, 构造 c j = m a x { b j ( 1 ) − m ,   M − b j ( 2 ) } c_j=max\{b_j^{(1)}-m,~M-b_j^{(2)}\} cj=max{bj(1)m, Mbj(2)}
    x j ′ = { 1 − b j ( 1 ) − x j c j , x j < b j ( 1 ) , 1 ,                        b j ( 1 ) ≤ x ≤ b j ( 2 ) , 1 − x j − b j ( 2 ) c j , x j > b j ( 2 ) x'_j=\left\{ \begin{aligned} &1-\frac{b_j^{(1)}-x_j}{c_j},x_j<b_j^{(1)},\\ & 1,~~~~~~~~~~~~~~~~~~~~~~b_j^{(1)}\le x\le b_j^{(2)},\\ &1-\frac{x_j-b_j^{(2)}}{c_j},x_j>b_j^{(2)} \end{aligned} \right. xj= 1cjbj(1)xj,xj<bj(1),1,                      bj(1)xbj(2),1cjxjbj(2),xj>bj(2)

    • m ≤ b j ( 1 ) < b j ( 2 ) ≤ M m\le b_j^{(1)}< b_j^{(2)}\le M mbj(1)<bj(2)M , c j c_j cj代表区间端点到线段(m,M)端点的最大值
    • x j x_j xj落在区间的左端,那么 x j x_j xj b j ( 1 ) b_j^{(1)} bj(1)的距离一定小于 c j c_j cj ,同理落在区间右端到 b j ( 2 ) b_j^{(2)} bj(2) 也一样
    • 分段函数每段都<1,只有当 x j → b j ( 1 ) 或 b j ( 2 ) x_j\rightarrow b_j^{(1)}或b_j^{(2)} xjbj(1)bj(2) 时, x j ′ → 1 x'_j\rightarrow1 xj1

无量纲化处理

5.数据预处理—数据标准化(三) - 知乎 (zhihu.com)

无量纲化处理,也称为指标的规范化

通过数学变换消除原始指标的单位及其数值数量级的影响

实际值–》指标评价值

数据矩阵: X = [ a 11 a 12 … a 1 m a 21 a 22 … a 2 n ⋮ ⋮ … ⋮ a n 1 a n 2 … a n m ] X=\left[\begin{array}{rrr} a_{11} & a_{12} &\dots &a_{1m} \\a_{21}& a_{22}&\dots&a_{2n}\\\vdots& \vdots&\dots&\vdots\\a_{n1}&a_{n2}&\dots&a_{nm}\end{array}\right] X= a11a21an1a12a22an2a1ma2nanm

  • Z − S c o r e Z-Score ZScore标准样本变化法1️⃣:**(数值-均值)/标准差 **,

    a i j ( i = 1 , 2 , … , n ; j = 1 , 2 , … , m ) a_{ij}(i=1,2,\dots,n;j=1,2,\dots,m) aij(i=1,2,,n;j=1,2,,m)

    a i j ∗ = a i j − μ j s j ,      μ j = 1 n ∑ j = 1 n a i j ,        s j = 1 n ∑ i = 1 n ( a i j − μ j ) 2 , j = 1 , 2 , … , m a_{ij}^*=\frac{a_{ij}-\mu_j}{s_j},~~~~\mu_j=\frac{1}{n}\mathop{\sum}\limits_{j=1}^na_{ij},~~~~~~s_j=\sqrt{\frac{1}{n}\mathop{\sum}\limits_{i=1}^n(a_{ij}-\mu_j)^2},j=1,2,\dots,m aij=sjaijμj,    μj=n1j=1naij,      sj=n1i=1n(aijμj)2 ,j=1,2,,m

    μ j \mu_j μj为样本均值, s j s_j sj为该指标的标准差

    • 这种变换方式会存在 a i j ∗ < 0 a_{ij}^*<0 aij<0 ,在熵权法和几何加权平均法中,这种数据处理并不适用

    • 对指标都进行Z-Score 处理,可以保证各指标服从均值为0,标准差为1的正态分布,各指标的变化幅度得到了统一 (假设各指标服从一般的正态分布)

    • matlab 函数:

      [Y, settings] = mapstd(X)%X 为数据矩阵,Y为Z-Score处理后的矩阵,setting为结构体包含标准差,均值等信息
      zscore(X)
      
    • python

      sklearn.preprocessing.scale(X)
      
  • 比例变化法2️⃣:

    极大型指标:
    a i j ∗ = a i j m a x 1 ≤ i ≤ n   a i j a_{ij}^*=\frac{a_{ij}}{\mathop{max}\limits_{1\le i\le n}~a_{ij}} aij=1inmax aijaij
    极小型指标:
    a i j ∗ = m i n 1 ≤ i ≤ n   a i j a i j 或 a i j ∗ = 1 − a i j m a x 1 ≤ i ≤ n   a i j a_{ij}^*=\frac{\mathop{min}\limits_{1\le i\le n}~a_{ij}}{a_{ij}}\\或 \\ a_{ij}^*=1-\frac{a_{ij}}{\mathop{max}\limits_{1\le i\le n}~a_{ij}} aij=aij1inmin aijaij=11inmax aijaij

    • 比例变换使得数据与原来的数据成比例,便于后期还原真实值
    • 但是比例变换的区间不完整,0和1未必同时出现
  • 向量归一法3️⃣:

    欧几里得向量空间的长度定义:

    极大型:
    a i j ∗ = a i j ∑ i = 1 n a i j 2 a_{ij}^*=\frac{a_{ij}}{\sqrt{\mathop{\sum}\limits_{i=1}^{n}a_{ij}^2}} aij=i=1naij2 aij
    极小型:
    a i j ∗ = 1 − a i j ∑ i = 1 n a i j 2 a_{ij}^*=1-\frac{a_{ij}}{\sqrt{\mathop{\sum}\limits_{i=1}^{n}a_{ij}^2}} aij=1i=1naij2 aij

  • 极差变换法(最大最小归一化):
    a i j ∗ = m a x − a i j m a x − m i n a_{ij}^*=\frac{max-a_{ij}}{max-min} aij=maxminmaxaij

    • 同理极小型 1 − a i j ∗ 1-a_{ij}^* 1aij

    • 经极差变换后, 0 ≤ a i j ∗ ≤ 1 0\le a_{ij}^*\le1 0aij1,且最优值为1,最劣值为0

    • 变换后和原数据不成比例

    • matlab:

      [Y,PS] = mapminmax(X,YMIN,YMAX)%——将数据X归一化到区间[YMIN,YMAX]内,YMIN和YMAX为调用mapminmax函数时设置的参数,如果不设置这两个参数,这默认归一化到区间[-1, 1]内。标准化处理后的数据为Y,PS为记录标准化映射的结构体。
      
  • 功效系数法 :

    a i j ∗ = c + m a x − a i j m a x − m i n × d a_{ij}^*=c+\frac{max-a_{ij}}{max-min}\times d aij=c+maxminmaxaij×d
    c , d c,d c,d分别表示平移量和旋转量(即放大的倍数)

    • 功效系数法使得 a i j ∗ ∈ [ c , c + d ] a_{ij}^*\in[c,c+d] aij[c,c+d] ,落在设定的区间内,在进行数据比对时更加直观
    • 常用 c = 60 , d = 40 , a i j ∗ ∈ [ 60 , 100 ] c=60,d=40,a_{ij}^*\in[60,100] c=60,d=40,aij[60,100]

功效系数法_百度百科 (baidu.com)

定性指标定量化

等级很高一般很低
量化值10.70.50.30
  • 对于介于中间的模糊值,可以进行细化

数学评价模型

多属性决策方法:

数据矩阵: X = [ a 11 a 12 … a 1 m a 21 a 22 … a 2 m ⋮ ⋮ … ⋮ a n 1 a n 2 … a n m ] X=\left[\begin{array}{rrr} a_{11} & a_{12} &\dots &a_{1m} \\a_{21}& a_{22}&\dots&a_{2m}\\\vdots& \vdots&\dots&\vdots\\a_{n1}&a_{n2}&\dots&a_{nm}\end{array}\right] X= a11a21an1a12a22an2a1ma2manm

📩理想解法TOPSIS

technique for order preference by similarity to ideal solution

  • 构造评价矩阵:评价指标预处理(极大化)向量化处理(适用于欧几里得空间)

    • 如果各个指标存在权重 w j ,     j = 1 , 2 , … , m w_j,~~~j=1,2,\dots,m wj,   j=1,2,,m
  • 构造正理想解和负理想解

  • 计算各个方案到理想方案的相对贴近度,排序–》得分

    • 即靠近正理想解,又远离负理想解
  • 理想解集:

    • 正理想解 C + = [ c 1 + , c 2 + , … , c m + ] C^+=[c_1^+,c_2^+,\dots,c_m^+] C+=[c1+,c2+,,cm+] ,其中 c i + = m a x   b i j ,    j = 1 , 2 , … , m c_i^+=max~b_{ij},~~j=1,2,\dots,m ci+=max bij,  j=1,2,,m
    • 向量的每个元素为数据矩阵列向量的最大值
    • 负理想解 C − = [ c 1 − , c 2 − , … , c m − ] ,  c j = m i n   b i j , j = 1 , 2 , … , m C^-=[c_1^-,c_2^-,\dots,c_m^-],~c_j=min~b_{ij},j=1,2,\dots,m C=[c1,c2,,cm] cj=min bij,j=1,2,,m
    • 向量的每个元素为数据矩阵列向量的最小值
  • 计算各评价对象到正理想解和负理想解的距离(欧几里得距离):

    • 评价对象到正理想解的距离
      s i + = ∑ j = 1 m ( b i j − c j + ) 2   , i = 1 , 2 , … , n s_i^+=\sqrt{\sum_{j=1}^m(b_{ij}-c_{j}^+)^2}~~,i=1,2,\dots,n si+=j=1m(bijcj+)2   i=1,2,,n

    • 评价对象到负理想解的距离
      s i + = ∑ j = 1 m ( b i j − c j − ) 2   , i = 1 , 2 , … , n s_i^+=\sqrt{\sum_{j=1}^m(b_{ij}-c_{j}^-)^2}~~,i=1,2,\dots,n si+=j=1m(bijcj)2   i=1,2,,n

    • X X X每一行计算返回一个距离值, s i s_i si 为列向量

  • 计算各对象到理想解的相对接近度
    f i = s i − / ( s i − + s i + ) f_i=s_i^-/(s_i^-+s_i^+) fi=si/(si+si+)
    f i = [ f 1 , f 2 , … , f n ] T f_i=[f_1,f_2,\dots,f_n]^T fi=[f1,f2,,fn]T , f n f_n fn 为n个对象的优劣得分

    (越靠近正理想解(分母小),远离负理想解–》得分越大)

powerc(w,x)%自定义求理想解得分

🔗灰色关联度分析

  1. 确定评价对象和参考数列(评价标准)

    假设: n n n个评价对象, m m m个评价指标

  2. 确定指标权重: w j ,    j = 1 , 2 , … , m w_j,~~j=1,2,\dots,m wj,  j=1,2,,m

    构造评价矩阵:(一致化和统一量纲化) X = ( x i j ) n × m X=(x_{ij})_{n\times m} X=(xij)n×m

  3. 构造比较数列
    x i = { x i j ∣ j = 1 , 2 , … , m } x_i=\{x_{ij}|j=1,2,\dots,m\} xi={xijj=1,2,,m}
    x i x_i xi为第i个评价对象标准化后的指标向量

  4. 构造参考数列
    x 0 = { x 0 j ∣ j = 1 , 2 , … , m } x_0=\{x_{0j}|j=1,2,\dots,m\} x0={x0jj=1,2,,m}
    x 0 j x_{0j} x0j 为每列的虚拟最优值,一般取 x 0 = m a x    b i j , j = 1 , 2 , … , m x_0=max~~b_{ij},j=1,2,\dots,m x0=max  bij,j=1,2,,m ,每列的最大值

  5. 计算灰色关联系数:
    ξ i j = m i n 1 ≤ s ≤ n    m i n 1 ≤ k ≤ m ∣ x 0 k − x s k ∣ + ρ m a x 1 ≤ s ≤ n    m a x 1 ≤ k ≤ m ∣ x 0 k − x s k ∣ ∣ b 0 j − b i j ∣ + ρ m a x 1 ≤ s ≤ n    m a x 1 ≤ k ≤ m ∣ x 0 k − x s k ∣ \xi_{ij}=\frac{\mathop{min}\limits_{1\le s\le n}~~\mathop{min}\limits_{1\le k\le m}|x_{0k}-x_{sk}|+\rho\mathop{max}\limits_{1\le s\le n}~~\mathop{max}\limits_{1\le k\le m}|x_{0k}-x_{sk}|}{|b_{0j}-b_{ij}|+\rho\mathop{max}\limits_{1\le s\le n}~~\mathop{max}\limits_{1\le k\le m}|x_{0k}-x_{sk}|} ξij=b0jbij+ρ1snmax  1kmmaxx0kxsk1snmin  1kmminx0kxsk+ρ1snmax  1kmmaxx0kxsk

    • ρ ∈ [ 0 , 1 ] \rho\in[0,1] ρ[0,1]为分辨系数
    • 分子=两级最小差( 计算每一列元素和该列的虚拟最优值的距离在求出此时矩阵的最小元素,每行和参考数列的距离中的最小值)+分辨率 × \times ×两级最大差
    • ξ i j \xi_{ij} ξij为每个比较数列 x i x_i xi x 0 x_0 x0 在指标 j j j的关联系数
  6. 计算灰色关联度:
    r i = ∑ j = 1 m w j ξ i j ,    i = 1 , 2 , … , n r_i=\sum_{j=1}^mw_j\xi_{ij},~~i=1,2,\dots,n ri=j=1mwjξij,  i=1,2,,n

function who= GMwhobest(X,x0)%自定义的函数,X为原始数据矩阵,x0为参考数列(可以不给出,默认为每列的最大值构成的行向量)
  • 也可以用灰色关联法探究序列的正负关联性 (iPad)

🧮数据包络法 DEA(Data Envelopment Analysis)

相对效率

评价具有多指标输入和多指标输出系统:

非线性规划确定权重,目标函数是使:输出/投入的效率最高

适用于指标之间存在输入和输出的因果关系

DMU1
system
DMU2
W
C 2 R C^2R C2R模型

假定规模和报酬不变

  • 假设有 n 个 D M U n个DMU nDMU (决策单元) 数据矩阵 X n × m X_{n\times m} Xn×m

    • D M U DMU DMU代表m种投入和s种产出
    • x i j x_{ij} xij:第 j j j D M U DMU DMU的第 i i i投入量, ( i = 1 , 2 , … , m , j = 1 , … , n ) (i=1,2,\dots,m,j=1,\dots,n) (i=1,2,,m,j=1,,n)
    • y r j y_{rj} yrj:第 j j j D M U DMU DMU的第 r r r产出量, ( r = 1 , 2 , … , m , j = 1 , … , n ) (r=1,2,\dots,m,j=1,\dots,n) (r=1,2,,m,j=1,,n)
    • v i , u i v_i,u_i vi,ui:第i种投入(产出)的权值
  • 决策单元j的输入和输出向量:

    • X j = ( x 1 j , x 2 j , … , x m j ) X_j=(x_{1j},x_{2j},\dots,x_{mj}) Xj=(x1j,x2j,,xmj) 输入

      • 输入的权值向量: v = ( v 1 , v 2 , … , v s ) T v=(v_1,v_2,\dots,v_s)^T v=(v1,v2,,vs)T
    • Y j = ( y 1 j , y 2 j , … , y m j ) Y_j=(y_{1j},y_{2j},\dots,y_{mj}) Yj=(y1j,y2j,,ymj) 输出

      • 输出的权值向量: u = ( u 1 , u 2 , … , u s ) T u=(u_1,u_2,\dots,u_s)^T u=(u1,u2,,us)T
  • 目的就是通过规划求解出合适的权值使效率最大化

    • 评价指数(系统效率): h j = ( u T Y j ) / ( v T X j ) h_j=(u^TY_j)/(v^TX_j) hj=(uTYj)/(vTXj)
  • 决策单元 j 0 j_0 j0规划模型:
    m a x    u T Y j 0 v T X j 0 s . t . { u T Y j v T X j ≤ 1 , j = 1 , 2 , … , n , u ≥ 0 , v ≥ 0 , u ≠ 0 , v ≠ 0 max~~\frac{u^TY_{j_0}}{v^TX_{j_0}}\\\quad \quad \quad s.t. \left\{\begin{aligned} & \frac{u^TY_{j}}{v^TX_{j}}\le1,j=1,2,\dots,n,\\ &u\ge 0,v\ge0,u\neq0,v\neq0\\ \end{aligned} \right. max  vTXj0uTYj0s.t. vTXjuTYj1,j=1,2,,n,u0,v0,u=0,v=0

  • Charnes-Cooper 变换: w = t v , μ = t u , t = 1 v T X j 0 w=tv,\mu=tu,t=\frac{1}{v^TX_{j_0}} w=tv,μ=tu,t=vTXj01

    转化为线性规划:
    m a x   V j 0 = μ T Y j 0 s . t . { w T X j − μ T Y j ≥ 0 , j = 1 , 2 , … , n , w T X j 0 = 1 , w ≥ 0 , μ ≥ 0 max~V_{j_0}=\mu^TY_{j_0}\\ s.t. \left\{\begin{aligned} & w^TX_j-\mu^TY_j\ge0,j=1,2,\dots,n,\\ & w^TX_{j_0}=1,\\ &w\ge0,\mu\ge 0 \end{aligned} \right. max Vj0=μTYj0s.t. wTXjμTYj0,j=1,2,,n,wTXj0=1,w0,μ0
    X j 0 X_{j_0} Xj0为向量, t = 1 / ∑ i = 1 m x i j 0 v i t=1/\sum_{i=1}^mx_{ij_0}v_i t=1/i=1mxij0vi 是一个数值,所以 μ T Y = ( t u ) T Y = t u T Y = u T Y j 0 v T X j 0 \mu^TY=(tu)^TY=tu^TY=\frac{u^TY_{j_0}}{v^TX_{j_0}} μTY=(tu)TY=tuTY=vTXj0uTYj0

    w T X j = t v T X j = 1 w^TX_{j}=tv^TX_{j}=1 wTXj=tvTXj=1

    两者等价

  • 可以再简化为线性规划的对偶形式

    m i n   θ s . t . { ∑ j = 1 n λ i X j ≤ θ X j 0 , ∑ j = 1 n λ j X j ≥ Y j 0 , λ j ≥ 0 , j = 1 , 2 , … , n 。 min~\theta\\s.t. \left\{\begin{aligned} &\sum_{j=1}^n\lambda_iX_j\le\theta X_{j_0}, \\ &\sum_{j=1}^n\lambda_jX_j\ge Y_{j_0},\\ &\lambda_j\ge0,j=1,2,\dots,n。 \end{aligned} \right. min θs.t. j=1nλiXjθXj0,j=1nλjXjYj0,λj0,j=1,2,,n


  • 定义:

    • V j 0 = 1 V_{j_0}=1 Vj0=1,则称决策单元 j 0 j_0 j0弱DEA有效
    • V j 0 = 1 V_{j_0}=1 Vj0=1,且存在最优解 w ∗ > 0 , μ ∗ > 0 w^*>0,\mu^*>0 w>0,μ>0 ,则称决策单元 j 0 j_0 j0 D E A DEA DEA 有效的
  • 所谓有效即决策单元的投入和产出比达到最大,于是就可以通过最优解对决策单元进行评价

  • 每个评价的对象,有两个向量。一个向量包含各种投入的值,另一个向量包含各种产出的值

  • 数据矩阵X的每一行代表一个对象,所以每一行都组成一个DMU

  • 通过比较各个对象的DMU的最优值 来进行排序

  • LNGO (Charnes-Cooper 变换后的线性规划):

    model:
    sets:
      
    DMU/1..m/:s,t,p;
    #m,为数据矩阵的行数(投入或产出的数据量),p为单位坐标向量,s,t为中间变量;  
    inw/1..k/:omega;
    #k为投入的指标个数,omega为各指标的权重
    outw/1..K/:mu; 
    #K为产出的指标个数,mu为各指标的权重
    inv(inw,DUM):x;
    #输入的变量矩阵X(k*m)k个指标,m个对象
    outv(outw,DUM):y;
    #输出的变量矩阵Y
    endsets    
    data:
    #实时输入数据,对第n个单元做评价时就输入n (n=1,2,...,m)    
    ctr=?;    
    #录入X,Y矩阵的数据,不同指标(列向量)作为矩阵X或Y的行向量
    x=...;
    y=...;
    enddata    
    max=@sum(DMU:p*t);#对象n的产出权和    
    p(ctr)=1;
    @for(DMU(i)|i#ne#ctr:p(i)=0);
    #构造w^TX (1*m) 和mu^TY    
    @for(DMU(i):s(i)=@sum(inw(j):omega(j)*x(i,j)));
    t(j)=@sum(out(i):mu(i)*y(i));
    #不等式约束
    s(j)-t(j)>0;
    @sum(DMU:p*s)=1;#等式约束
    end    
    
  • DEA适合于多输入和多输出的复杂系统

    • 从最有利于决策单元的角度进行评价(对于不同的对象不同指标的权重未必固定才最好),避免了各指标在优先意义下的权重的确定
    • 假定了每中输入都关联了一个或者多个输出(如果指标之间真存在关系,DEA方法不必去确定这种关系
    • 最优化的方法确定权重排除主观因素,较为客观

🎲秩和比综合评价法(RSR)

Rank sum Ration

参考资料:

秩和比法_百度百科 (baidu.com)

秩和比法 - MBA智库百科 (mbalib.com)

通过研究RSR的分布,以RSR值对评价对象的优劣直接排序或分档排序,从而对评价对象作出综合评价

秩统计量:

  • (1)式为某项指标下的各评价对象组成的序列

  • (2)式为(1)式从小到大排序后的序列

  • 如果 x i = x ( k ) x_i=x_{(k)} xi=x(k),则将k记作 R i R_i Ri ,称为第i个数据的秩统计量,由此可以得到该指标序列各个数值的值统计量

x 1 , x 2 , … , x n    ( 1 ) x ( 1 ) , x ( 2 ) , … , x ( n )    ( 2 ) x_1,x_2,\dots,x_n ~~(1)\\ x_{(1)},x_{(2)},\dots,x_{(n)}~~(2) x1,x2,,xn  (1)x(1),x(2),,x(n)  (2)
步骤

  1. 编秩

将矩阵 X = [ a 11 a 12 … a 1 m a 21 a 22 … a 2 m ⋮ ⋮ … ⋮ a n 1 a n 2 … a n m ] X=\left[\begin{array}{rrr} a_{11} & a_{12} &\dots &a_{1m} \\a_{21}& a_{22}&\dots&a_{2m}\\\vdots& \vdots&\dots&\vdots\\a_{n1}&a_{n2}&\dots&a_{nm}\end{array}\right] X= a11a21an1a12a22an2a1ma2manm $ 的每列(指标列向量序列)按指定的编秩方法 进行编秩(效益型从小到大排序,成本型从大到小,其余类型转化为这两种类型即可)

如此构造出秩矩阵 R = ( R i j ) n × m R=(R_{ij})_{n\times m} R=(Rij)n×m

  1. 计算秩和比(RSR)
    R S R i = 1 m n ∑ j = 1 m R i j , i = 1 , 2 , … , n W R S R i = 1 n ∑ j = 1 m w j R i j , i = 1 , 2 , … , n RSR_i=\frac{1}{mn}\sum_{j=1}^{m}R_{ij},i=1,2,\dots,n\\ \\ WRSR_i=\frac{1}{n}\sum_{j=1}^mw_jR_{ij},i=1,2,\dots,n RSRi=mn1j=1mRij,i=1,2,,nWRSRi=n1j=1mwjRij,i=1,2,,n

    • WRSR为指标存在权重的情况,如果各指标权重相同则变相视作 w j = 1 m w_j=\frac{1}{m} wj=m1
    • 每个对象对应一个RSR
  2. 计算频率单位。按从小到大的顺序编制RSR(WRSR)频数分布表 f i f_i fi,每组即为每个评价对象

    • 计算累积频数 c f i = ∑ i = 1 k f k , 1 ≤ i ≤ k < n cf_i=\sum_{i=1}^kf_k,1\le i\le k<n cfi=i=1kfk,1ik<n
    • 计算累积概率: p i = c f i n p_i=\frac{cf_i}{n} pi=ncfi
      • 最后一个累积频率近似为 1 − 1 / ( 4 n ) 1-1/(4n) 11/(4n)
    • 将累积概率转换为: P r o b i t i , ( i = 1 , 2 , … , n ) Probit_i,(i=1,2,\dots,n) Probiti,(i=1,2,,n) 标准概率分布的 p i p_i pi分位数+5
  3. 计算直线回归方程:

    • WRSR 为因变量
    • P r o b i t i Probit_i Probiti 为自变量
    • 回归直线为 W R S R i = a + b × P r o b i t i WRSR_i=a+b\times Probit_i WRSRi=a+b×Probiti ,确定系数a,b 即可
  4. 回归直线推算的估计值(WRSR)对评价对象进行分档排序

层次分析法AHP

analytic hierarchy process

本质上就是权重的累积逐层传递

假设一个目标,n个准则,k个方案

目标层
准则层
方案层
  1. 确定比较矩阵(目标层–》准则层) A n × n A_{n\times n} An×n
    A = [ 1 1 2 … 3 1 2 1 … 1 6 ⋮ ⋮ … ⋮ 1 3 6 … 1 ] A=\left[\begin{array}{rrr} 1 & \frac{1}{2} &\dots &3 \\\frac{1}{2}& 1&\dots&\frac{1}{6}\\\vdots& \vdots&\dots&\vdots\\\frac{1}{3}&6&\dots&1\end{array}\right] A= 1213121163611

    • A 为正互反矩阵( a i j = 1 a j i , a i j > 0 a_{ij}=\frac{1}{a_{ji}},a_{ij}>0 aij=aji1,aij>0

    • a i j a_{ij} aij 代表对于目标来说,准则i相较于准则j的重要程度

    • 比较的尺度:

      同样重要稍微重要明显重要强烈重要极端重要
      13579
      • 对于模糊的重要性介于两者之间(偶数)
    • Perron 定理:

      • 正互反矩阵一定存在特征值一个最大特征值 λ m a x \lambda_{max} λmax ,且对应的特征向量 X X X为正向量 : A X = λ m a x X AX=\lambda_{max}X AX=λmaxX
      • n阶正互换矩阵是一致阵,当且仅当 λ m a x = n \lambda_{max}=n λmax=n
  2. 计算权向量:

    • 计算正互反矩阵A的最大特征值对应的特征向量
      • W = X / ∥ X ∥ W=X/\Vert X\Vert W=X/∥X 特征向量归一化后即为权重向量
      • 代表了个准则层在固定目标的前提下各自的重要程度
  3. 构造准则层–》方案层的比较矩阵

    • 每个准则视作“目标”
    • 各个方案在这个准则下的优势即为重要程度
    • 由此k个方案,n个准则,构造出 A i k × k , i = 1 , 2 , . . . , n A_{i_{k\times k}},i=1,2,...,n Aik×k,i=1,2,...,n
  4. 计算 A i k × k , i = 1 , 2 , . . . , n A_{i_{k\times k}},i=1,2,...,n Aik×k,i=1,2,...,n 的权向量: W i , i = 1 , 2 , . . . n W_i,i=1,2,...n Wi,i=1,2,...n (列向量)

    • W i , i = 1 , 2 , . . . n W_i,i=1,2,...n Wi,i=1,2,...n 代表了在不同准则下各个方案的权重
  5. 构造分块矩阵P

    • P = [ W 1 , W 2 , W 3 , . . . , W n ] k × n P=[W_1,W_2,W_3,...,W_n]_{k\times n} P=[W1,W2,W3,...,Wn]k×n
    • P P P的每行元素代表了每个方案在不同准则下的权重(表现)
  6. 综合评价:

    • P k × n W n × 1 = K k × 1 P_{k\times n}W_{n\times 1}=K_{k\times 1} Pk×nWn×1=Kk×1 将三层结合在一起,列向量 K k × 1 K_{k\times1} Kk×1 即为各个方案在目标下的权重

级比检验:

  • 在构造比较矩阵时是人为的判断未必是正互反矩阵

    • a相较于b的重要程度是3(a=3b),b相较于c的重要程度是2(b=2c)并不能说明a 相较于c的重要程度是6
    • 如果矩阵不具有一致性,特征向量 W W W就无法真实的反应各指标的权重
  • 需要去衡量所构造的比较矩阵A的不一致程度

    因为n阶正互换矩阵是一致阵,当且仅当 λ m a x = n \lambda_{max}=n λmax=n ,所以一致性指标为:
    C I = λ m a x − n n − 1 CI=\frac{\lambda_{max}-n}{n-1} CI=n1λmaxn

    • 性质:比较矩阵 ∑ λ = n \sum \lambda=n λ=n
  • 平均随机一致性指标(n :1~9) 统计指标

    n123456789
    RI000.580.901.121.241.321.411.45
  • 一致性比率: C R = C I R I < 0.1 CR=\frac{CI}{RI}<0.1 CR=RICI<0.1 时则视作矩阵有满意的一致性,否则需要调整矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值