称硬币

POJ1013

Description

Sally Jones has a dozen Voyageur silver dollars. However, only eleven
of the coins are true silver dollars; one coin is counterfeit even
though its color and size make it indistinguishable from the real
silver dollars. The counterfeit coin has a different weight from the
other coins but Sally does not know if it is heavier or lighter than
the real coins.Happily, Sally has a friend who loans her a very
accurate balance scale. The friend will permit Sally three weighings
to find the counterfeit coin. For instance, if Sally weighs two coins
against each other and the scales balance then she knows these two
coins are true. Now if Sally weighsone of the true coins against a
third coin and the scales do not balance then Sally knows the third
coin is counterfeit and she can tell whether it is light or heavy
depending on whether the balance on which it is placed goes up or
down, respectively.By choosing her weighings carefully, Sally is able
to ensure that she will find the counterfeit coin with exactly three
weighings.

Input

The first line of input is an integer n (n > 0) specifying the number
of cases to follow. Each case consists of three lines of input, one
for each weighing. Sally has identified each of the coins with the
letters A–L. Information on a weighing will be given by two strings
of letters and then one of the words up'',down”, or “even”.
The first string of letters will represent the coins on the left
balance; the second string, the coins on the right balance. (Sally
will always place the same number of coins on the right balance as on
the left balance.) The word in the third position will tell whether
the right side of the balance goes up, down, or remains even.

Output

For each case, the output will identify the counterfeit coin by its
letter and tell whether it is heavy or light. The solution will always
be uniquely determined. Sample Input

ABCD EFGH even

ABCI EFJK up

ABIJ EFGH even Sample Output

K is the counterfeit coin and it is light.

PS:今天写这个题真是恶心至死。一个main不小心写成了mian 一直提示||error: ld returned 1 exit status|。可就是检查不出错误!太粗心!

#include <iostream>
#include <cstring>
using namespace std;
char Left[3][7];
char Right[3][7];
char result[3][7];

bool IsFake(char c, bool light);
int main()
{
    int t;
    cin >> t;
    while(t--)
    {
        for(int i=0; i<3; i++)
        {
            cin >> Left[i] >> Right[i] >> result[i];
        }
        for(char c='A'; c<='L'; c++)
        {
            if(IsFake(c, true))
            {
                cout << c  <<" is the counterfeit coin and it is light.\n";
                break;
            }
            else if(IsFake(c, false))
            {
                cout << c  <<" is the counterfeit coin and it is heavy.\n";
                break;
            }
        }
    }
    return 0;
}

bool IsFake(char c, bool light)
{
    for(int i=0; i<3; i++)
    {
        char *pLeft;
        char *pRight;

        if(light)
        {
            pLeft = Left[i];
            pRight = Right[i];
        }
        else
        {
            pLeft = Right[i];
            pRight = Left[i];
        }
        switch(result[i][0])
        {
            case 'u':
                if( strchr(pRight, c) == NULL)
                    return false;
                break;
            case 'e':
                if( strchr(pRight, c) || strchr(pLeft, c))
                    return false;
                break;
            case 'd':
                if( strchr(pLeft, c) == NULL)
                    return false;
                break;
        }
    }
    return true;
}
### Java实现硬币兑换问题的动态规划算法 以下是基于动态规划的思想来解决硬币兑换问题的一个完整的Java实现。此实现的目标是最少使用多少枚硬币可以凑齐指定金额。 #### 动态规划的核心思路 动态规划是一种通过分解子问题并存储中间结果的方法,从而避免重复计算的技术。对于硬币兑换问题,定义状态`dp[i]`表示凑成金额`i`所需的最少硬币数[^1]。转移方程如下: \[ dp[i] = \min_{j=0}^{m}(dp[i - coins[j]] + 1),\quad i \geq coins[j] \] 其中,`coins[]`是可用硬币的面额数组,`m`是硬币种类的数量。 --- #### 完整代码实现 ```java public class CoinChange { public static int minCoinChange(int[] coins, int amount) { // 初始化dp数组,大小为amount+1,默认值设为最大值 int[] dp = new int[amount + 1]; Arrays.fill(dp, Integer.MAX_VALUE); // 当目标金额为0时,所需硬币数量为0 dp[0] = 0; // 填充dp表 for (int i = 1; i <= amount; i++) { for (int coin : coins) { if (coin <= i && dp[i - coin] != Integer.MAX_VALUE) { dp[i] = Math.min(dp[i], dp[i - coin] + 1); // 更新最小值 } } } // 如果无法凑足总金额,则返回-1 return dp[amount] == Integer.MAX_VALUE ? -1 : dp[amount]; } public static void main(String[] args) { int[] coins = {1, 2, 5}; // 可用硬币面额 int amount = 11; // 目标金额 int result = minCoinChange(coins, amount); System.out.println("最少需要 " + result + " 枚硬币凑成金额 " + amount); } } ``` --- #### 代码解析 1. **初始化DP数组** 创建一个长度为`amount+1`的数组`dp`,初始值设置为`Integer.MAX_VALUE`,代表不可达的状态。特别地,`dp[0]=0`,因为凑成金额0不需要任何硬币[^4]。 2. **填充DP表格** 对于每一个可能的金额`i`(从1到`amount`),尝试每一种硬币面额`coin`,如果当前硬币能用于组成金额`i`(即`coin<=i`),则更新`dp[i]`为其前一状态加上一枚硬币的结果。 3. **边界条件处理** 若最终`dp[amount]`仍保持为`Integer.MAX_VALUE`,说明没有任何组合可以达到目标金额,因此返回`-1`。 --- #### 贪心算法对比 虽然贪心算法也可以应用于某些特定场景下的硬币找零问题,但它并不总是能找到全局最优解。例如,在硬币面额不满足某种特殊性质的情况下,贪心策略可能会失败[^2]。相比之下,动态规划能够保证找到全局最优解。 --- #### 输出示例 假设输入硬币面额为{1, 2, 5},目标金额为11,则程序输出如下: ``` 最少需要 3 枚硬币凑成金额 11 ``` 这是因为可以通过三枚硬币(两枚5元和一枚1元)恰好凑满11元。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ReCclay

如果觉得不错,不妨请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值